When pathways collide: collaboration and connivance among signalling proteins in development (original) (raw)
Cohen, P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature296, 613–620 (1982). ArticleCASPubMed Google Scholar
van Amerongen, R. & Nusse, R. Towards an integrated view of Wnt signaling in development. Development136, 3205–3214 (2009). ArticleCASPubMed Google Scholar
MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell17, 9–26 (2009). References 2 and 3 provide excellent and up-to-date reviews of Wnt signalling. ArticleCASPubMedPubMed Central Google Scholar
Zhao, B., Lei, Q. Y. & Guan, K. L. The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr. Opin. Cell Biol.20, 638–646 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zeng, Q. & Hong, W. The emerging role of the Hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell13, 188–192 (2008). References 4 and 5 provide excellent and up-to-date reviews of Hippo signalling. ArticleCASPubMed Google Scholar
Klingensmith, J. & Nusse, R. Signaling by Wingless in Drosophila. Dev. Biol.166, 396–414 (1994). ArticleCASPubMed Google Scholar
Major, M. B. et al. Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science316, 1043–1046 (2007). ArticleCASPubMed Google Scholar
Miller, B. W. et al. Application of an integrated physical and functional screening approach to identify inhibitors of the Wnt pathway. Mol. Syst. Biol.5, 315 (2009). References 7 and 8 provide excellent examples of the power of proteomic approaches for the unbiased assessment of pathway topology and interactions. ArticlePubMedPubMed CentralCAS Google Scholar
Mosimann, C., Hausmann, G. & Basler, K. β-catenin hits chromatin: regulation of Wnt target gene activation. Nature Rev. Mol. Cell Biol.10, 276–286 (2009). ArticleCAS Google Scholar
Jho, E. H. et al. Wnt/β-catenin/TCF signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol.22, 1172–1183 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lee, E., Salic, A., Kruger, R., Heinrich, R. & Kirschner, M. W. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol.1, E10 (2003). ArticlePubMedPubMed CentralCAS Google Scholar
Benchabane, H., Hughes, E. G., Takacs, C. M., Baird, J. R. & Ahmed, Y. Adenomatous polyposis coli is present near the minimal level required for accurate graded responses to the Wingless morphogen. Development135, 963–971 (2008). ArticleCASPubMed Google Scholar
Doble, B. W., Patel, S., Wood, G. A., Kockeritz, L. K. & Woodgett, J. R. Functional redundancy of GSK-3α and GSK-3β in Wnt/β-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev. Cell12, 957–971 (2007). Describes the insensitivity to the loss of GSK3 alleles in embryonic stem cells and reveals a requirement for GSK3 in differentiation. ArticleCASPubMedPubMed Central Google Scholar
Cohen, P. & Frame, S. The renaissance of GSK3. Nature Rev. Mol. Cell Biol.2, 769–776 (2001). ArticleCAS Google Scholar
Davidson, G. et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature438, 867–872 (2005). ArticleCASPubMed Google Scholar
Zeng, X. et al. Initiation of Wnt signaling: control of Wnt coreceptor LRP6 phosphorylation/activation via Frizzled, Dishevelled and Axin functions. Development135, 367–375 (2008). References 16–18 describe the positive roles of two protein kinases in Wnt signalling that had previously been ascribed negative functions. ArticleCASPubMed Google Scholar
Takacs, C. M. et al. Dual positive and negative regulation of Wingless signaling by Adenomatous polyposis coli. Science319, 333–336 (2008). ArticleCASPubMed Google Scholar
McManus, E. J. et al. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J.24, 1571–1583 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ng, S. S. et al. Phosphatidylinositol 3-kinase signaling does not activate the Wnt cascade. J. Biol. Chem.284, 35308–35313 (2009). Provides compelling evidence to debunk the link between PI3K signals and Wnt responses, demonstrating signal authenticity. ArticleCASPubMedPubMed Central Google Scholar
Orsulic, S. & Peifer, M. An in vivo structure-function study of Armadillo, the β-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for Wingless signaling. J. Cell Biol.134, 1283–300 (1996). ArticleCASPubMed Google Scholar
Chen, W. S. et al. Asymmetric homotypic interactions of the atypical cadherin Flamingo mediate intercellular polarity signaling. Cell133, 1093–1105 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lawrence, P. A., Casal, J. & Struhl, G. Towards a model of the organisation of planar polarity and pattern in the Drosophila abdomen. Development129, 2749–2760 (2002). ArticleCASPubMed Google Scholar
Casal, J., Struhl, G. & Lawrence, P. A. Developmental compartments and planar polarity in Drosophila. Curr. Biol.12, 1189–1198 (2002). ArticleCASPubMed Google Scholar
Rawls, A. S., Guinto, J. B. & Wolff, T. The cadherins Fat and Dachsous regulate dorsal/ventral signaling in the Drosophila eye. Curr. Biol.12, 1021–1026 (2002). ArticleCASPubMed Google Scholar
Yang, C. H., Axelrod, J. D. & Simon, M. A. Regulation of Frizzled by Fat-like cadherins during planar polarity signaling in the Drosophila compound eye. Cell108, 675–688 (2002). ArticleCASPubMed Google Scholar
Saburi, S. et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nature Genet.40, 1010–1015 (2008). Provides evidence for conserved roles ofD. melanogasterFat and mammalian FAT4 in PCP pathways. ArticleCASPubMed Google Scholar
Casal, J., Lawrence, P. A. & Struhl, G. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development133, 4561–4572 (2006). ArticleCASPubMed Google Scholar
Sopko, R. & McNeill, H. The skinny on Fat: an enormous cadherin that regulates cell adhesion, tissue growth, and planar cell polarity. Curr. Opin. Cell Biol.21, 717–723 (2009). ArticleCASPubMed Google Scholar
Fanto, M. et al. The tumor-suppressor and cell adhesion molecule Fat controls planar polarity via physical interactions with Atrophin, a transcriptional co-repressor. Development130, 763–774 (2003). ArticleCASPubMed Google Scholar
Matakatsu, H. & Blair, S. S. Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development131, 3785–3794 (2004). ArticleCASPubMed Google Scholar
Simon, M. A. Planar cell polarity in the Drosophila eye is directed by graded Four-jointed and Dachsous expression. Development131, 6175–6184 (2004). ArticleCASPubMed Google Scholar
Yin, C., Ciruna, B. & Solnica-Krezel, L. Convergence and extension movements during vertebrate gastrulation. Curr. Top. Dev. Biol.89, 163–192 (2009). ArticleCASPubMed Google Scholar
Du, S. J., Purcell, S. M., Christian, J. L., McGrew, L. L. & Moon, R. T. Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol. Cell. Biol.15, 2625–2634 (1995). This analysis provides an effective classification schema and structure–function analysis of the Wnt family of ligands. ArticleCASPubMedPubMed Central Google Scholar
Wong, G. T., Gavin, B. J. & McMahon, A. P. Differential transformation of mammary epithelial cells by Wnt genes. Mol. Cell. Biol.14, 6278–6286 (1994). CASPubMedPubMed Central Google Scholar
Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nature Rev. Mol. Cell Biol.10, 468–477 (2009). ArticleCAS Google Scholar
Torres, M. A. et al. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell Biol.133, 1123–37 (1996). ArticleCASPubMed Google Scholar
Ishitani, T. et al. The TAK1-NLK-MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature399, 798–802 (1999). ArticleCASPubMed Google Scholar
Meneghini, M. D. et al. MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature399, 793–797 (1999). ArticleCASPubMed Google Scholar
Yan, D. et al. Cell autonomous regulation of multiple Dishevelled-dependent pathways by mammalian Nkd. Proc. Natl Acad. Sci. USA98, 3802–3807 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. M. et al. RORα attenuates Wnt/β-catenin signaling by PKCα-dependent phosphorylation in colon cancer. Mol. Cell37, 183–195 (2010). ArticleCASPubMed Google Scholar
Minami, Y., Oishi, I., Endo, M. & Nishita, M. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev. Dyn.239, 1–15 (2010). CASPubMed Google Scholar
Sato, A., Yamamoto, H., Sakane, H., Koyama, H. & Kikuchi, A. Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J.29, 41–54 (2010). ArticleCASPubMed Google Scholar
Matsumoto, S., Fumoto, K., Okamoto, T., Kaibuchi, K. & Kikuchi, A. Binding of APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. EMBO J.29, 1192–1204 (2010). ArticleCASPubMedPubMed Central Google Scholar
O'Connell, M. P. et al. The orphan tyrosine kinase receptor, ROR2, mediates Wnt5A signaling in metastatic melanoma. Oncogene29, 34–44 (2010). ArticleCASPubMed Google Scholar
Roman-Gomez, J. et al. WNT5A, a putative tumour suppressor of lymphoid malignancies, is inactivated by aberrant methylation in acute lymphoblastic leukaemia. Eur. J. Cancer43, 2736–46 (2007). ArticleCASPubMed Google Scholar
Oishi, I. et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells8, 645–654 (2003). ArticleCASPubMed Google Scholar
Mikels, A. J. & Nusse, R. Purified Wnt5a protein activates or inhibits β-catenin-TCF signaling depending on receptor context. PLoS Biol.4, e115 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
He, X. et al. A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science275, 1652–4 (1997). ArticleCASPubMed Google Scholar
Yamamoto, S. et al. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev. Cell15, 23–36 (2008). ArticleCASPubMed Google Scholar
Badouel, C. et al. The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev. Cell16, 411–420 (2009). ArticleCASPubMed Google Scholar
Goulev, Y. et al. Scalloped interacts with Yorkie, the nuclear effector of the Hippo tumor-suppressor pathway in Drosophila. Curr. Biol.18, 435–441 (2008). ArticleCASPubMed Google Scholar
Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell14, 388–398 (2008). ArticleCASPubMed Google Scholar
Zhang, L. et al. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev. Cell14, 377–387 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bennett, F. C. & Harvey, K. F. Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr. Biol.16, 2101–2110 (2006). ArticleCASPubMed Google Scholar
Cho, E. et al. Delineation of a Fat tumor suppressor pathway. Nature Genet.38, 1142–1150 (2006). ArticleCASPubMed Google Scholar
Silva, E., Tsatskis, Y., Gardano, L., Tapon, N. & McNeill, H. The tumor-suppressor gene fat controls tissue growth upstream of Expanded in the Hippo signaling pathway. Curr. Biol.16, 2081–2089 (2006). ArticleCASPubMed Google Scholar
Willecke, M. et al. The Fat cadherin acts through the Hippo tumor-suppressor pathway to regulate tissue size. Curr. Biol.16, 2090–2100 (2006). References 62–64 position and characterize the key molecules associated with Fat signalling into a pathway. ArticleCASPubMed Google Scholar
Yu, J., Poulton, J., Huang, Y. C. & Deng, W. M. The Hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity. PLoS One3, e1761 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Meignin, C., Alvarez-Garcia, I., Davis, I. & Palacios, I. M. The Salvador-Warts-Hippo pathway is required for epithelial proliferation and axis specification in Drosophila. Curr. Biol.17, 1871–1878 (2007). ArticleCASPubMedPubMed Central Google Scholar
Polesello, C. & Tapon, N. Salvador-Warts-Hippo signaling promotes Drosophila posterior follicle cell maturation downstream of Notch. Curr. Biol.17, 1864–1870 (2007). ArticleCASPubMed Google Scholar
Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nature Cell Biol.8, 27–36 (2006). ArticleCASPubMed Google Scholar
Sopko, R. et al. Phosphorylation of the tumor suppressor fat is regulated by its ligand Dachsous and the kinase Discs overgrown. Curr. Biol.19, 1112–1117 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yu, J. et al. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev. Cell18, 288–299 (2010). ArticleCASPubMedPubMed Central Google Scholar
Baumgartner, R., Poernbacher, I., Buser, N., Hafen, E. & Stocker, H. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev. Cell18, 309–316 (2010). ArticleCASPubMed Google Scholar
Genevet, A., Wehr, M. C., Brain, R., Thompson, B. J. & Tapon, N. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev. Cell18, 300–308 (2010). ArticleCASPubMedPubMed Central Google Scholar
Oh, H., Reddy, B. V. & Irvine, K. D. Phosphorylation-independent repression of Yorkie in Fat-Hippo signaling. Dev. Biol.335, 188–197 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rogulja, D., Rauskolb, C. & Irvine, K. D. Morphogen control of wing growth through the Fat signaling pathway. Dev. Cell15, 309–321 (2008). ArticleCASPubMedPubMed Central Google Scholar
Baena-Lopez, L. A., Rodriguez, I. & Baonza, A. The tumor suppressor genes dachsous and fat modulate different signalling pathways by regulating Dally and Dally-like. Proc. Natl Acad. Sci. USA105, 9645–9650 (2008). ArticleCASPubMedPubMed Central Google Scholar
Herranz, H. & Milan, M. Signalling molecules, growth regulators and cell cycle control in Drosophila. Cell Cycle7, 3335–3337 (2008). ArticleCASPubMed Google Scholar
Peng, H. W., Slattery, M. & Mann, R. S. Transcription factor choice in the Hippo signaling pathway: Homothorax and Yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev.23, 2307–2319 (2009). ArticleCASPubMedPubMed Central Google Scholar
Alarcon, C. et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell139, 757–769 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fernandez, L. A. et al. YAP1 is amplified and up-regulated in Hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev.23, 2729–2741 (2009). ArticleCAS Google Scholar
Varelas, X. et al. The Hippo pathway regulates Wnt/β-catenin signalling. Dev. Cell18, 579–591 (2010). ArticleCASPubMed Google Scholar
Yuan, Z. et al. Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J. Biol. Chem.285, 3815–3824 (2010). ArticleCASPubMed Google Scholar
Zhang, J. et al. YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nature Cell Biol.11, 1444–1450 (2009). ArticleCASPubMed Google Scholar
Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell16, 425–438 (2009). ArticleCASPubMedPubMed Central Google Scholar
Owens, D. M. & Keyse, S. M. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene26, 3203–3213 (2007). ArticleCASPubMed Google Scholar
Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature461, 614–620 (2009). Reveals a new level of regulation of Wnt signalling through the tankyrase-mediated destabilization of axin 1. ArticleCASPubMed Google Scholar
Goentoro, L. & Kirschner, M. W. Evidence that fold-change, and not absolute level, of β-catenin dictates Wnt signaling. Mol. Cell36, 872–884 (2009). ArticleCASPubMedPubMed Central Google Scholar
Buchert, M. et al. Genetic dissection of differential signaling threshold requirements for the Wnt/β-catenin pathway in vivo. PLoS Genet.6, e1000816 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Yokota, Y. et al. The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron61, 42–56 (2009). ArticleCASPubMedPubMed Central Google Scholar
Goentoro, L., Shoval, O., Kirschner, M. W. & Alon, U. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol. Cell36, 894–899 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, W. Y. et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nature Neurosci.12, 1390–1397 (2009). ArticleCASPubMed Google Scholar