PI3K signalling: the path to discovery and understanding (original) (raw)
Sugimoto, Y., Whitman, M., Cantley, L. C. & Erikson, R. L. Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc. Natl Acad. Sci. USA81, 2117–2121 (1984). CASPubMedPubMed Central Google Scholar
Macara, I. G., Marinetti, G. V. & Balduzzi, P. C. Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: possible role in tumorigenesis. Proc. Natl Acad. Sci. USA81, 2728–2732 (1984). CASPubMedPubMed Central Google Scholar
Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L. & Roberts, T. M. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature315, 239–242 (1985). CASPubMed Google Scholar
Kaplan, D. R. et al. Phosphatidylinositol metabolism and polyoma-mediated transformation. Proc. Natl Acad. Sci. USA83, 3624–3628 (1986). CASPubMedPubMed Central Google Scholar
Kaplan, D. R. et al. Common elements in growth factor stimulation and oncogenic transformation: 85 KD phosphoprotein and phosphatidylinositol kinase activity. Cell50, 1021–1029 (1987). CASPubMed Google Scholar
Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature332, 644–646 (1988). CASPubMed Google Scholar
Traynor-Kaplan, A. E., Harris, A. L., Thompson, B. L., Taylor, P. & Sklar, L. A. An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature334, 353–356 (1988). CASPubMed Google Scholar
Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P. & Cantley, L. C. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell57, 167–175 (1989). CASPubMed Google Scholar
Traynor-Kaplan, A. E. et al. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J. Biol. Chem.264, 15668–15673 (1989). CASPubMed Google Scholar
Stephens, L., Hawkins, P. T. & Downes, C. P. Metabolic and structural evidence for the existence of a third species of polyphosphoinositide in cells: _D_-phosphatidyl-_myo_-inositol 3-phosphate. Biochem. J.259, 267–276 (1989). CASPubMedPubMed Central Google Scholar
Ruderman, N. B., Kapeller, R., White, M. F. & Cantley, L. C. Activation of phosphatidylinositol 3-kinase by insulin. Proc. Natl Acad. Sci. USA87, 1411–1415 (1990). CASPubMedPubMed Central Google Scholar
Stephens, L. R., Hughes, K. T. & Irvine, R. F. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature351, 33–39 (1991). CASPubMed Google Scholar
Hawkins, P. T., Jackson, T. R. & Stephens, L. R. Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature358, 157–159 (1992). CASPubMed Google Scholar
Divecha, N. & Irvine, R. F. Phospholipid signaling. Cell80, 269–278 (1995). CASPubMed Google Scholar
Carpenter, C. L. et al. Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem.265, 19704–19711 (1990). CASPubMed Google Scholar
Morgan, S. J., Smith, A. D. & Parker, P. J. Purification and characterization of bovine brain type I phosphatidylinositol kinase. Eur. J. Biochem.191, 761–767 (1990). CASPubMed Google Scholar
Shibasaki, F., Homma, Y. & Takenawa, T. Two types of phosphatidylinositol 3-kinase from bovine thymus. Monomer and heterodimer form. J. Biol. Chem.266, 8108–8114 (1991). CASPubMed Google Scholar
Fry, M. J. et al. Purification and characterization of a phosphatidylinositol 3-kinase complex from bovine brain by using phosphopeptide affinity columns. Biochem. J.288, 383–393 (1992). CASPubMedPubMed Central Google Scholar
Courtneidge, S. A. & Heber, A. An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell50, 1031–1037 (1987). CASPubMed Google Scholar
Otsu, M. et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell65, 91–104 (1991). CASPubMed Google Scholar
Escobedo, J. A. et al. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF β-receptor. Cell65, 75–82 (1991). CASPubMed Google Scholar
Skolnik, E. Y. et al. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell65, 83–90 (1991). CASPubMed Google Scholar
Hiles, I. D. et al. Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell70, 419–429 (1992). CASPubMed Google Scholar
Backer, J. M. et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J.11, 3469–3479 (1992). CASPubMedPubMed Central Google Scholar
Herman, P. K. & Emr, S. D. Characterization of Vps34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol. Cell. Biol.10, 6742–6754 (1990). CASPubMedPubMed Central Google Scholar
Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast _VPS_34 gene essential for protein sorting. Science260, 88–91 (1993). CASPubMed Google Scholar
Stephens, L. et al. Characterization of a phosphatidylinositol-specific phosphoinositide 3-kinase from mammalian cells. Curr. Biol.4, 203–214 (1994). CASPubMed Google Scholar
Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature382, 536–539 (1996). CASPubMed Google Scholar
MacDougall, L. K., Domin, J. & Waterfield, M. D. A family of phosphoinositide 3-kinases in Drosophila identifies a new mediator of signal transduction. Curr. Biol.5, 1404–1415 (1995). CASPubMed Google Scholar
Zhou, K., Takegawa, K., Emr, S. D. & Firtel, R. A. A phosphatidylinositol (PI) kinase gene family in Dictyostelium discoideum: biological roles of putative mammalian p110 and yeast Vps34p PI 3-kinase homologs during growth and development. Mol. Cell. Biol.15, 5645–5656 (1995). CASPubMedPubMed Central Google Scholar
Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science269, 690–693 (1995). CASPubMed Google Scholar
Stephens, L. et al. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell77, 83–93 (1994). CASPubMed Google Scholar
Stephens, L. R. et al. The Gβγ sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell89, 105–114 (1997). CASPubMed Google Scholar
Stack, J. H., Herman, P. K., Schu, P. V. & Emr, S. D. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J.12, 2195–2204 (1993). CASPubMedPubMed Central Google Scholar
Virbasius, J. V., Guilherme, A. & Czech, M. P. Mouse p170 is a novel phosphatidylinositol 3-kinase containing a C2 domain. J. Biol. Chem.271, 13304–13307 (1996). CASPubMed Google Scholar
Domin, J. et al. Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem. J.326, 139–147 (1997). CASPubMedPubMed Central Google Scholar
Arcaro, A. et al. Human phosphoinositide 3-kinase C2β, the role of calcium and the C2 domain in enzyme activity. J. Biol. Chem.273, 33082–33090 (1998). CASPubMed Google Scholar
Ono, F. et al. A novel class II phosphoinositide 3-kinase predominantly expressed in the liver and its enhanced expression during liver regeneration. J. Biol. Chem.273, 7731–7736 (1998). CASPubMed Google Scholar
Misawa, H. et al. Cloning and characterization of a novel class II phosphoinositide 3-kinase containing C2 domain. Biochem. Biophys. Res. Commun.244, 531–539 (1998). CASPubMed Google Scholar
Maffucci, T., Brancaccio, A., Piccolo, E., Stein, R. C. & Falasca, M. Insulin induces phosphatidylinositol- 3-phosphate formation through TC10 activation. EMBO J.22, 4178–4189 (2003). CASPubMedPubMed Central Google Scholar
Zvelebil, M. J. et al. Structural and functional diversity of phosphoinositide 3-kinases. Philos. Trans. R. Soc. Lond. B351, 217–223 (1996). CAS Google Scholar
Vanhaesebroeck, B., Leevers, S. J., Panayotou, G. & Waterfield, M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci.22, 267–272 (1997). CASPubMed Google Scholar
Sjolander, A., Yamamoto, K., Huber, B. E. & Lapetina, E. G. Association of p21ras with phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA88, 7908–7912 (1991). CASPubMedPubMed Central Google Scholar
Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature370, 527–532 (1994). CASPubMed Google Scholar
Kodaki, T. et al. The activation of phosphatidylinositol 3-kinase by Ras. Curr. Biol.4, 798–806 (1994). CASPubMed Google Scholar
Wiesinger, D., Gubler, H. U., Haefliger, W. & Hauser, D. Antiinflammatory activity of the new mould metabolite 11-desacetoxy-wortmannin and of some of its derivatives. Experientia30, 135–136 (1974). CASPubMed Google Scholar
Arcaro, A. & Wymann, M. P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J.296, 297–301 (1993). CASPubMedPubMed Central Google Scholar
Yano, H. et al. Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J. Biol. Chem.268, 25846–25856 (1993). CASPubMed Google Scholar
Okada, T., Sakuma, L., Fukui, Y., Hazeki, O. & Ui, M. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. J. Biol. Chem.269, 3563–3567 (1994). CASPubMed Google Scholar
Powis, G. et al. Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res.54, 2419–2423 (1994). CASPubMed Google Scholar
Thelen, M., Wymann, M. P. & Langen, H. Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes. Proc. Natl Acad. Sci. USA91, 4960–4964 (1994). CASPubMedPubMed Central Google Scholar
Vlahos, C. J., Matter, W. F., Hui, K. Y. & Brown, R. F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem.269, 5241–5248 (1994). CASPubMed Google Scholar
Kotani, K. et al. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J.13, 2313–2321 (1994). CASPubMedPubMed Central Google Scholar
Roche, S., Koegl, M. & Courtneidge, S. A. The phosphatidylinositol 3-kinase α is required for DNA synthesis induced by some, but not all, growth factors. Proc. Natl Acad. Sci. USA91, 9185–9189 (1994). CASPubMedPubMed Central Google Scholar
Kazlauskas, A. & Cooper, J. A. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell58, 1121–1133 (1989). CASPubMed Google Scholar
Fantl, W. J. et al. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell69, 413–423 (1992). CASPubMed Google Scholar
Coughlin, S. R., Escobedo, J. A. & Williams, L. T. Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science243, 1191–1194 (1989). CASPubMed Google Scholar
Hara, K. et al. 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc. Natl Acad. Sci. USA91, 7415–7419 (1994). CASPubMedPubMed Central Google Scholar
Okada, T., Kawano, Y., Sakakibara, T., Hazeki, O. & Ui, M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem.269, 3568–3573 (1994). CASPubMed Google Scholar
Wennstrom, S. et al. Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr. Biol.4, 385–393 (1994). CASPubMed Google Scholar
Wennstrom, S. et al. Membrane ruffling and chemotaxis transduced by the PDGF β-receptor require the binding site for phosphatidylinositol 3′ kinase. Oncogene9, 651–660 (1994). CASPubMed Google Scholar
Wymann, M. & Arcaro, A. Platelet-derived growth factor-induced phosphatidylinositol 3-kinase activation mediates actin rearrangements in fibroblasts. Biochem. J.298, 517–520 (1994). CASPubMedPubMed Central Google Scholar
Haslam, R. J., Koide, H. B. & Hemmings, B. A. Pleckstrin domain homology. Nature363, 309–310 (1993). CASPubMed Google Scholar
Mayer, B. J., Ren, R., Clark, K. L. & Baltimore, D. A putative modular domain present in diverse signaling proteins. Cell73, 629–630 (1993). CASPubMed Google Scholar
Harlan, J. E., Hajduk, P. J., Yoon, H. S. & Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature371, 168–170 (1994). CASPubMed Google Scholar
Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature376, 599–602 (1995). CASPubMed Google Scholar
Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell81, 727–736 (1995). CASPubMed Google Scholar
Alessi, D. R. et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr. Biol.7, 776–789 (1997). CASPubMed Google Scholar
Stephens, L. et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science279, 710–714 (1998). CASPubMed Google Scholar
Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol.7, 261–269 (1997). CASPubMed Google Scholar
Stokoe, D. et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science277, 567–570 (1997). CASPubMed Google Scholar
Alessi, D. R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J.15, 6541–6551 (1996). CASPubMedPubMed Central Google Scholar
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307, 1098–1101 (2005). CASPubMed Google Scholar
Alessi, D. R., Caudwell, F. B., Andjelkovic, M., Hemmings, B. A. & Cohen, P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett.399, 333–338 (1996). CASPubMed Google Scholar
Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378, 785–789 (1995). CASPubMed Google Scholar
Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell91, 231–241 (1997). CASPubMed Google Scholar
del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science278, 687–689 (1997). CASPubMed Google Scholar
Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/_neu_-overexpressing cells. Nature Cell Biol.3, 245–52 (2001). CASPubMed Google Scholar
Viglietto, G. et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nature Med.8, 1136–1144 (2002). CASPubMed Google Scholar
Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nature Med.8, 1145–1152 (2002). CASPubMed Google Scholar
Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nature Med.8, 1153–1160 (2002). CASPubMed Google Scholar
Kane, S. et al. A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J. Biol. Chem.277, 22115–22118 (2002). CASPubMed Google Scholar
Bruss, M. D., Arias, E. B., Lienhard, G. E. & Cartee, G. D. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes54, 41–50 (2005). CASPubMed Google Scholar
Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature389, 994–999 (1997). CASPubMed Google Scholar
Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev.12, 2488–2498 (1998). CASPubMedPubMed Central Google Scholar
Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature398, 630–634 (1999). CASPubMed Google Scholar
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96, 857–868 (1999). CASPubMed Google Scholar
Biggs, W. H. 3rd, Meisenhelder, J., Hunter, T., Cavenee, W. K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. USA96, 7421–7426 (1999). CASPubMedPubMed Central Google Scholar
Guo, S. et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem.274, 17184–17192 (1999). CASPubMed Google Scholar
Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem.274, 17179–17183 (1999). CASPubMed Google Scholar
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol.4, 648–657 (2002). CASPubMed Google Scholar
Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nature Cell Biol.4, 658–665 (2002). CASPubMed Google Scholar
Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell10, 151–162 (2002). CASPubMed Google Scholar
Hawkins, P. T. et al. PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr. Biol.5, 393–403 (1995). CASPubMed Google Scholar
Cheatham, B. et al. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol.14, 4902–4911 (1994). CASPubMedPubMed Central Google Scholar
Chung, J., Grammer, T. C., Lemon, K. P., Kazlauskas, A. & Blenis, J. PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature370, 71–75 (1994). CASPubMed Google Scholar
Welsh, G. I., Foulstone, E. J., Young, S. W., Tavare, J. M. & Proud, C. G. Wortmannin inhibits the effects of insulin and serum on the activities of glycogen synthase kinase-3 and mitogen-activated protein kinase. Biochem. J.303, 15–20 (1994). CASPubMedPubMed Central Google Scholar
Andjelkovic, M. et al. Role of translocation in the activation and function of protein kinase B. J. Biol. Chem.272, 31515–31524 (1997). CASPubMed Google Scholar
Venkateswarlu, K., Oatey, P. B., Tavare, J. M. & Cullen, P. J. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr. Biol.8, 463–466 (1998). CASPubMed Google Scholar
Li, Z. et al. Phosphatidylinositol 3-kinaseγ activates Bruton's tyrosine kinase in concert with Src family kinases. Proc. Natl Acad. Sci. USA94, 13820–13825 (1997). CASPubMedPubMed Central Google Scholar
Isakoff, S. J. et al. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J.17, 5374–5387 (1998). CASPubMedPubMed Central Google Scholar
Dowler, S. et al. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem. J.351, 19–31 (2000). CASPubMedPubMed Central Google Scholar
Klarlund, J. K. et al. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science275, 1927–1930 (1997). CASPubMed Google Scholar
Welch, H. C. et al. P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-regulated guanine-nucleotide exchange factor for Rac. Cell108, 809–821 (2002). CASPubMed Google Scholar
Krugmann, S. et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell9, 95–108 (2002). CASPubMed Google Scholar
Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J.15, 6241–6250 (1996). CASPubMedPubMed Central Google Scholar
Varnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell. Biol.143, 501–510 (1998). CASPubMedPubMed Central Google Scholar
Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science287, 1037–1040 (2000). CASPubMedPubMed Central Google Scholar
Meili, R. et al. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J.18, 2092–2105 (1999). CASPubMedPubMed Central Google Scholar
Stenmark, H., Aasland, R., Toh, B. H. & D'Arrigo, A. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J. Biol. Chem.271, 24048–24054 (1996). CASPubMed Google Scholar
Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature394, 494–498 (1998). CASPubMed Google Scholar
Gaullier, J. M. et al. FYVE fingers bind PtdIns(3)P. Nature394, 432–433 (1998). CASPubMed Google Scholar
Patki, V., Lawe, D. C., Corvera, S., Virbasius, J. V. & Chawla, A. A functional PtdIns(3)P-binding motif. Nature394, 433–434 (1998). CASPubMed Google Scholar
Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell2, 157–162 (1998). CASPubMed Google Scholar
Song, X. et al. Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry40, 8940–8944 (2001). CASPubMed Google Scholar
Ellson, C. D. et al. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nature Cell Biol.3, 679–682 (2001). CASPubMed Google Scholar
Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biol.3, 675–678 (2001). CASPubMed Google Scholar
Cheever, M. L. et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biol.3, 613–618 (2001). CASPubMed Google Scholar
Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci.114, 2255–2263 (2001). CASPubMed Google Scholar
Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol.152, 519–530 (2001). CASPubMedPubMed Central Google Scholar
Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nature Rev. Mol. Cell. Biol.11, 329–341 (2010). CAS Google Scholar
Leevers, S. J., Weinkove, D., MacDougall, L. K., Hafen, E. & Waterfield, M. D. The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J.15, 6584–6594 (1996). CASPubMedPubMed Central Google Scholar
Chang, H. W. et al. Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science276, 1848–1850 (1997). CASPubMed Google Scholar
Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science287, 1049–1053 (2000). CASPubMed Google Scholar
Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science287, 1040–1046 (2000). CASPubMed Google Scholar
Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science287, 1046–1049 (2000). CASPubMed Google Scholar
Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science297, 1031–1034 (2002). CASPubMed Google Scholar
Clayton, E. et al. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med.196, 753–763 (2002). CASPubMedPubMed Central Google Scholar
Jou, S. T. et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110δ in signaling by the B-cell receptor complex. Mol. Cell. Biol.22, 8580–8591 (2002). CASPubMedPubMed Central Google Scholar
Foukas, L. C. et al. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature441, 366–370 (2006). CASPubMed Google Scholar
Knight, Z. A. et al. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell125, 733–747 (2006). CASPubMedPubMed Central Google Scholar
Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science275, 1943–1947 (1997). CASPubMed Google Scholar
Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet.15, 356–362 (1997). CASPubMed Google Scholar
Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet.16, 64–67 (1997). CASPubMed Google Scholar
Marsh, D. J. et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nature Genet.16, 333–334 (1997). CASPubMed Google Scholar
Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem.273, 13375–13378 (1998). CASPubMed Google Scholar
Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science304, 554 (2004). CASPubMed Google Scholar
Campbell, I. G. et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res.64, 7678–7681 (2004). CASPubMed Google Scholar
Jimenez, C. et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J.17, 743–753 (1998). CASPubMedPubMed Central Google Scholar
Philp, A. J. et al. The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res.61, 7426–7429 (2001). CASPubMed Google Scholar
The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455, 1061–1068 (2008).
Jaiswal, B. S. et al. Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation. Cancer Cell16, 463–474 (2009). CASPubMedPubMed Central Google Scholar
Blondeau, F. et al. Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum. Mol. Genet.9, 2223–2229 (2000). CASPubMed Google Scholar
Taylor, G. S., Maehama, T. & Dixon, J. E. Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc. Natl Acad. Sci. USA97, 8910–8915 (2000). CASPubMedPubMed Central Google Scholar
Bielas, S. L. et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nature Genet.41, 1032–1036 (2009). CASPubMed Google Scholar
Jacoby, M. et al. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nature Genet.41, 1027–1031 (2009). CASPubMed Google Scholar
Sadhu, C., Masinovsky, B., Dick, K., Sowell, C. G. & Staunton, D. E. Essential role of phosphoinositide 3-kinase δ in neutrophil directional movement. J. Immunol.170, 2647–2654 (2003). CASPubMed Google Scholar
Camps, M. et al. Blockade of PI3Kγ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nature Med.11, 936–943 (2005). CASPubMed Google Scholar
Jackson, S. P. et al. PI 3-kinase p110β: a new target for antithrombotic therapy. Nature Med.11, 507–514 (2005). CASPubMed Google Scholar
Walker, E. H., Perisic, O., Ried, C., Stephens, L. & Williams, R. L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature402, 313–320 (1999). CASPubMed Google Scholar
Huang, C. H. et al. The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations. Science318, 1744–1748 (2007). CASPubMed Google Scholar
Zhang, X. et al. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol. Cell41, 567–578. CASPubMedPubMed Central Google Scholar
Berndt, A. et al. The p110 δ structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Nature Chem. Biol.6, 117–124. CASPubMedPubMed Central Google Scholar
Miller, S. et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science327, 1638–1642 (2010). CASPubMedPubMed Central Google Scholar
Joly, M., Kazlauskas, A., Fay, F. S. & Corvera, S. Disruption of PDGF receptor trafficking by mutation of its PI-3 kinase binding sites. Science263, 684–687 (1994). CASPubMed Google Scholar
Volinia, S. et al. A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p–Vps15p protein sorting system. EMBO J.14, 3339–3348 (1995). CASPubMedPubMed Central Google Scholar
Yao, R. & Cooper, G. M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science267, 2003–2006 (1995). CASPubMed Google Scholar
Scheid, M. P., Lauener, R. W. & Duronio, V. Role of phosphatidylinositol 3-OH-kinase activity in the inhibition of apoptosis in haemopoietic cells: phosphatidylinositol 3-OH-kinase inhibitors reveal a difference in signalling between interleukin-3 and granulocyte-macrophage colony stimulating factor. Biochem. J.312, 159–162 (1995). CASPubMedPubMed Central Google Scholar
Vanhaesebroeck, B. et al. P110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl Acad. Sci. USA94, 4330–4335 (1997). CASPubMedPubMed Central Google Scholar
Chantry, D. et al. p110δ, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J. Biol. Chem.272, 19236–19241 (1997). CASPubMed Google Scholar
Dudek, H. et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science275, 661–665 (1997). CASPubMed Google Scholar
Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H. & Downward, J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J.16, 2783–2793 (1997). CASPubMedPubMed Central Google Scholar
Kauffmann-Zeh, A. et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature385, 544–548 (1997). CASPubMed Google Scholar
Kulik, G., Klippel, A. & Weber, M. J. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol. Cell. Biol.17, 1595–1606 (1997). CASPubMedPubMed Central Google Scholar
Kennedy, S. G. et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev.11, 701–713 (1997). CASPubMed Google Scholar
Ahmed, N. N., Grimes, H. L., Bellacosa, A., Chan, T. O. & Tsichlis, P. N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl Acad. Sci. USA94, 3627–3632 (1997). CASPubMedPubMed Central Google Scholar
Myers, M. P. et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl Acad. Sci. USA95, 13513–13518 (1998). CASPubMedPubMed Central Google Scholar
Stauffer, T. P., Ahn, S. & Meyer, T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol.8, 343–346 (1998). CASPubMed Google Scholar
Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science283, 393–397 (1999). CASPubMed Google Scholar
Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science283, 390–392 (1999). CASPubMed Google Scholar
Terauchi, Y. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3-kinase. Nature Genet.21, 230–235 (1999). CASPubMed Google Scholar
Bi, L., Okabe, I., Bernard, D. J., Wynshaw-Boris, A. & Nussbaum, R. L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem.274, 10963–10968 (1999). CASPubMed Google Scholar
Gewinner, C. et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell16, 115–125 (2009). CASPubMedPubMed Central Google Scholar
Fedele, C. G. et al. Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc. Natl Acad. Sci. USA107, 22231–2236 (2010). CASPubMedPubMed Central Google Scholar