Caveolae as plasma membrane sensors, protectors and organizers (original) (raw)
Palade, G. E. Fine structure of blood capillaries. J. Appl. Phys.24, 1424 (1953). Google Scholar
Yamada, E. The fine structures of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol.1, 445–458 (1955). CASPubMedPubMed Central Google Scholar
Hayashi, Y. K. et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J. Clin. Invest.119, 2623–2633 (2009). CASPubMedPubMed Central Google Scholar
Rajab, A. et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF–CAVIN mutations. PLoS Genet.6, e1000874 (2010). References 3 and 4 were the first papers showing that loss of cavins is associated with human disease. PubMedPubMed Central Google Scholar
Parton, R. G. & Simons, K. The multiple faces of caveolae. Nature Rev. Mol. Cell Biol.8, 185–194 (2007). CAS Google Scholar
Pelkmans, L. & Zerial, M. Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature436, 128–133 (2005). CASPubMed Google Scholar
Richter, T. et al. High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola–cytoskeleton interactions. Traffic9, 893–909 (2008). CASPubMed Google Scholar
Schlormann, W. et al. The shape of caveolae is omega-like after glutaraldehyde fixation and cup-like after cryofixation. Histochem. Cell Biol.133, 223–228 (2010). PubMed Google Scholar
Nixon, S. J. et al. Caveolin-1 is required for lateral line neuromast and notochord development. J. Cell Sci.120, 2151–2161 (2007). CASPubMed Google Scholar
Peters, K. R., Carley, W. W. & Palade, G. E. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J. Cell Biol.101, 2233–2238 (1985). CASPubMed Google Scholar
Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell68, 673–682 (1992). CASPubMed Google Scholar
Zhuang, Z., Marshansky, V., Breton, S. & Brown, D. Is caveolin involved in normal proximal tubule function? Presence in model PT systems but absence in situ. Am. J. Physiol. Renal Physiol.300, F199–F206 (2011). CASPubMed Google Scholar
Thorn, H. et al. Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol. Biol. Cell14, 3967–3976 (2003). CASPubMedPubMed Central Google Scholar
Rizzo, V., Morton, C., DePaola, N., Schnitzer, J. E. & Davies, P. F. Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am. J. Physiol. Heart Circ. Physiol.285, H1720–H1729 (2003). CASPubMed Google Scholar
Parat, M. O., Anand-Apte, B. & Fox, P. L. Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol. Biol. Cell14, 3156–3168 (2003). CASPubMedPubMed Central Google Scholar
Kurzchalia, T. V. et al. VIP21, a 21-kD membrane protein is an integral component of _trans_-Golgi-network-derived transport vesicles. J. Cell Biol.118, 1003–1014 (1992). CASPubMed Google Scholar
Scherer, P. E. et al. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl Acad. Sci. USA93, 131–135 (1996). CASPubMedPubMed Central Google Scholar
Way, M. & Parton, R. G. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett.376, 108–112 (1995). CASPubMed Google Scholar
Robenek, H., Weissen-Plenz, G. & Severs, N. J. Freeze-fracture replica immunolabelling reveals caveolin-1 in the human cardiomyocyte plasma membrane. J. Cell. Mol. Med.12, 2519–2521 (2008). CASPubMedPubMed Central Google Scholar
Head, B. P. et al. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J. Biol. Chem.281, 26391–26399 (2006). CASPubMed Google Scholar
Patel, H. H. et al. Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J.21, 1565–1574 (2007). CASPubMed Google Scholar
Tomassian, T. et al. Caveolin-1 orchestrates TCR synaptic polarity, signal specificity, and function in CD8 T cells. J. Immunol.187, 2993–3002 (2011). CASPubMed Google Scholar
Fernandez-Rojo, M. A. et al. Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology55, 1574–1584 (2012). CASPubMed Google Scholar
Head, B. P. et al. Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons. J. Biol. Chem.286, 33310–33321 (2011). CASPubMedPubMed Central Google Scholar
Drab, M. et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science293, 2449–2452 (2001). CASPubMed Google Scholar
Razani, B. et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem.277, 8635–8647 (2002). CASPubMed Google Scholar
Fra, A. M., Williamson, E., Simons, K. & Parton, R. G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl Acad. Sci. USA92, 8655–8659 (1995). CASPubMedPubMed Central Google Scholar
Walser, P. J. et al. Constitutive formation of caveolae in a bacterium. Cell150, 752–763 (2012). Shows that caveolin expression in a prokaryotic system is sufficient to drive the formation of cytoplasmic vesicles analogous to mammalian caveolae. In this model system, caveolins can drive membrane curvature and fission from the membrane. CASPubMed Google Scholar
Hansen, C. G. & Nichols, B. J. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol.20, 177–186 (2010). CASPubMed Google Scholar
Bastiani, M. et al. MURC/cavin-4 and cavin family members form tissue-specific caveolar complexes. J. Cell Biol.185, 1259–1273 (2009). CASPubMedPubMed Central Google Scholar
Jansa, P., Mason, S. W., Hoffmann-Rohrer, U. & Grummt, I. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J.17, 2855–2864 (1998). CASPubMedPubMed Central Google Scholar
Gustincich, S. & Schneider, C. Serum deprivation response gene is induced by serum starvation but not by contact inhibition. Cell Growth Differ.4, 753–760 (1993). CASPubMed Google Scholar
Izumi, Y. et al. A protein kinase Cδ-binding protein SRBC whose expression is induced by serum starvation. J. Biol. Chem.272, 7381–7389 (1997). CASPubMed Google Scholar
Ogata, T. et al. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol. Cell. Biol.28, 3424–3436 (2008). CASPubMedPubMed Central Google Scholar
Tagawa, M. et al. MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis. Am. J. Physiol. Cell Physiol.295, C490–C498 (2008). CASPubMed Google Scholar
Hill, M. M. et al. PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell132, 113–124 (2008). CASPubMedPubMed Central Google Scholar
Liu, L. et al. Deletion of cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab.8, 310–317 (2008). Together with reference 33, the first demonstration of the crucial role of cavin 1 in regulating caveola formation in cells and whole animals. PubMedPubMed Central Google Scholar
Hansen, C. G., Bright, N. A., Howard, G. & Nichols, B. J. SDPR induces membrane curvature and functions in the formation of caveolae. Nature Cell Biol.11, 807–814 (2009). CASPubMed Google Scholar
McMahon, K. A. et al. SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J.28, 1001–1015 (2009). CASPubMedPubMed Central Google Scholar
Hayer, A., Stoeber, M., Bissig, C. & Helenius, A. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic11, 361–382 (2010). Identifies a Asp-X-Glu sequence in the N-terminal domain of CAV1 required for exit from the ER. Analyses the assembly of cavin 1 into caveolar domains. CASPubMed Google Scholar
Gustincich, S. et al. The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics57, 120–129 (1999). CASPubMed Google Scholar
Fairn, G. D. et al. High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J. Cell Biol.194, 257–275 (2011). CASPubMedPubMed Central Google Scholar
Wanaski, S. P., Ng, B. K. & Glaser, M. Caveolin scaffolding region and the membrane binding region of SRC form lateral membrane domains. Biochemistry42, 42–56 (2003). CASPubMed Google Scholar
Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell144, 402–413 (2011). Demonstrates reversible flattening of caveolae and caveolin–cavin dissociation in response to acute mechanical stimuli and shows the importance of the caveolar system in the protection of cells against mechanical stress. CASPubMedPubMed Central Google Scholar
Breen, M. R., Camps, M., Carvalho-Simoes, F., Zorzano, A. & Pilch, P. F. Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteosomal degradation of cavin-2 in a switch-like fashion. PLoS ONE7, e34516 (2012). CASPubMedPubMed Central Google Scholar
Naslavsky, N. & Caplan, S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol.21, 122–131 (2011). CASPubMed Google Scholar
Daumke, O. et al. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature449, 923–927 (2007). CASPubMed Google Scholar
Moren, B. et al. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol. Biol. Cell23, 1316–1329 (2012). CASPubMedPubMed Central Google Scholar
Stoeber, M. et al. Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J.31, 2350–2364 (2012). Identifies, together with reference 50, the ATPase EHD2 as a new component of caveolae. Shows that EHD2 has a role in the regulation of caveolar dynamics. CASPubMedPubMed Central Google Scholar
Fujita, A., Cheng, J., Tauchi-Sato, K., Takenawa, T. & Fujimoto, T. A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. Proc. Natl Acad. Sci. USA106, 9256–9261 (2009). CASPubMedPubMed Central Google Scholar
Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol.141, 85–99 (1998). CASPubMedPubMed Central Google Scholar
Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol.141, 101–114 (1998). CASPubMedPubMed Central Google Scholar
Hansen, C. G., Howard, G. & Nichols, B. J. Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J. Cell Sci.124, 2777–2785 (2011). Demonstrates a role for the F-BAR domain protein PACSIN2 in caveola formation. CASPubMed Google Scholar
Senju, Y., Itoh, Y., Takano, K., Hamada, S. & Suetsugu, S. Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J. Cell Sci.124, 2032–2040 (2011). CASPubMed Google Scholar
Parton, R. G., Molero, J. C., Floetenmeyer, M., Green, K. M. & James, D. E. Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J. Biol. Chem.277, 46769–46778 (2002). CASPubMed Google Scholar
del Pozo, M. A. et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biol.7, 901–908 (2005). CASPubMed Google Scholar
Millan, J. et al. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nature Cell Biol.8, 113–123 (2006). CASPubMed Google Scholar
Echarri, A. et al. Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J. Cell Sci.125, 309–3113 (2012). Identifies the actin polymerization pathway that links caveolae to stress fibres and shows that adhesion strength and actin fibres modulate caveola plasticity from flattened structures to caveolar rosettes. Google Scholar
Echarri, A. & Del Pozo, M. A. Caveolae. Curr. Biol.22, R114–R116 (2012). CASPubMed Google Scholar
Parton, R. G., Way, M., Zorzi, N. & Stang, E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol.136, 137–154 (1997). CASPubMedPubMed Central Google Scholar
Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol.3, 473–483 (2001). CASPubMed Google Scholar
Ewers, H. et al. GM1 structure determines SV40-induced membrane invagination and infection. Nature Cell Biol.12, 11–18 (2010). CASPubMed Google Scholar
Damm, E. M. et al. Clathrin- and caveolin1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol.168, 477–488 (2005). CASPubMedPubMed Central Google Scholar
Oh, P. et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nature Biotech.25, 327–337 (2007). CAS Google Scholar
Rippe, B., Rosengren, B. I., Carlsson, O. & Venturoli, D. Transendothelial transport: the vesicle controversy. J. Vasc. Res.39, 375–390 (2002). CASPubMed Google Scholar
Pelkmans, L., Burli, T., Zerial, M. & Helenius, A. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell118, 767–780 (2004). CASPubMed Google Scholar
Hayer, A. et al. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J. Cell Biol.191, 615–629 (2010). CASPubMedPubMed Central Google Scholar
Boucrot, E., Howes, M. T., Kirchhausen, T. & Parton, R. G. Redistribution of caveolae during mitosis. J. Cell Sci.124, 1965–1972 (2011). CASPubMedPubMed Central Google Scholar
Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol.127, 1199–1215 (1994). CASPubMed Google Scholar
Le Lay, S. et al. Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic7, 549–561 (2006). CASPubMed Google Scholar
Sharma, D. K. et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell15, 3114–3122 (2004). CASPubMedPubMed Central Google Scholar
Muriel, O. et al. Phosphorylated filamin A regulates actin-linked caveolae dynamics. J. Cell Sci.124, 2763–2776 (2011). Shows, using high-spatio-temporal resolution particle tracking, that filamin A mediates stable arrest of CAV1 vesicles in confined areas and subsequent internalization. CASPubMed Google Scholar
Balasubramanian, N., Scott, D. W., Castle, J. D., Casanova, J. E. & Schwartz, M. A. Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nature Cell Biol.9, 1381–1391 (2007). CASPubMed Google Scholar
Ritz, D. et al. Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nature Cell Biol.13, 1116–1123 (2011). Identifies monoubiquitylated oligomeric caveolin as a binding partner of the VCP–UBXD1 complex and links caveolin turnover to human degenerative diseases associated with VCP mutations. CASPubMed Google Scholar
Yamanaka, K., Sasagawa, Y. & Ogura, T. Recent advances in p97/VCP/Cdc48 cellular functions. Biochim. Biophys. Acta1823, 130–137 (2011). PubMed Google Scholar
Stahlhut, M. & van Deurs, B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol. Biol. Cell11, 325–337 (2000). CASPubMedPubMed Central Google Scholar
Wickstrom, S. A. et al. Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Dev. Cell19, 574–588 (2010). Demonstrates a loss of caveolae in mice lacking β1 integrins or ILK and identifies the underlying cause as the defective microtubule-dependent trafficking of caveolae to the plasma membrane. PubMedPubMed Central Google Scholar
Singh, R. D. et al. Gangliosides and β1-integrin are required for caveolae and membrane domains. Traffic11, 348–360 (2010). CASPubMed Google Scholar
Sverdlov, M., Shinin, V., Place, A. T., Castellon, M. & Minshall, R. D. Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol. Biol. Cell20, 4531–4540 (2009). CASPubMedPubMed Central Google Scholar
Sharma, P. et al. β-dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release. J. Cell Sci.123, 3061–3070 (2010). CASPubMed Google Scholar
Lee, J. & Schmid-Schonbein, G. W. Biomechanics of skeletal muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formation. Ann. Biomed. Eng.23, 226–246 (1995). CASPubMed Google Scholar
Dulhunty, A. F. & Franzini-Armstrong, C. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol.250, 513–539 (1975). References 83 and 84 use elegant quantitative electron microscopy and different experimental systems to demonstrate flattening of caveolae in response to plasma membrane deformation. CASPubMedPubMed Central Google Scholar
Kozera, L., White, E. & Calaghan, S. Caveolae act as membrane reserves which limit mechanosensitive _I_Cl, swell channel activation during swelling in the rat ventricular myocyte. PLoS ONE4, e8312 (2009). PubMedPubMed Central Google Scholar
Czarny, M. & Schnitzer, J. E. Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J. Physiol. Heart Circ. Physiol.287, H1344–H1352 (2004). CASPubMed Google Scholar
Rizzo, V., Sung, A., Oh, P. & Schnitzer, J. E. Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J. Biol. Chem.273, 26323–26329 (1998). CASPubMed Google Scholar
Sedding, D. G. et al. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ. Res.96, 635–642 (2005). CASPubMed Google Scholar
Yu, J. et al. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest.116, 1284–1291 (2006). CASPubMedPubMed Central Google Scholar
Zhang, B. et al. Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell. Signal.19, 1690–1700 (2007). CASPubMed Google Scholar
Joshi, B. et al. Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. J. Cell Biol.199, 425–435 (2012). CASPubMedPubMed Central Google Scholar
Radel, C. & Rizzo, V. Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am. J. Physiol. Heart Circ. Physiol.288, H936–H945 (2005). CASPubMed Google Scholar
Grande-Garcia, A. et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J. Cell Biol.177, 683–694 (2007). CASPubMedPubMed Central Google Scholar
Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell146, 148–163 (2011). First direct demonstration of the role of CAV1 in mechanical regulation of the extracellular environment and its role in tumour invasion. CASPubMedPubMed Central Google Scholar
Yang, B., Radel, C., Hughes, D., Kelemen, S. & Rizzo, V. p190 RhoGTPase-activating protein links the β1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler. Thromb. Vasc. Biol.31, 376–383 (2011). CASPubMed Google Scholar
Boettcher, J. P. et al. Tyrosine-phosphorylated caveolin-1 blocks bacterial uptake by inducing Vav2–RhoA-mediated cytoskeletal rearrangements. PLoS Biol.8, e1000457 (2010). Shows that CAV1 is Tyr phosphorylated in response to bacterial uptake, which induces actin cytoskeletal reorganization via VAV2 and RHOA. PubMedPubMed Central Google Scholar
Bai, L. et al. Regulation of cellular senescence by the essential caveolar component PTRF/cavin-1. Cell Res.21, 1088–1101 (2011). CASPubMedPubMed Central Google Scholar
Hasegawa, T. et al. PTRF (polymerase I and transcript-release factor) is tissue-specific and interacts with the BFCOL1 (binding factor of a type-I collagen promoter) zinc-finger transcription factor which binds to the two mouse type-I collagen gene promoters. Biochem. J.347 (Pt. 1), 55–59 (2000). CASPubMedPubMed Central Google Scholar
Albinsson, S., Nordstrom, I., Sward, K. & Hellstrand, P. Differential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall. Am. J. Physiol. Cell Physiol.294, C271–C279 (2008). CASPubMed Google Scholar
Bernatchez, P. N., Sharma, A., Kodaman, P. & Sessa, W. C. Myoferlin is critical for endocytosis in endothelial cells. Am. J. Physiol. Cell Physiol.297, C484–C492 (2009). CASPubMedPubMed Central Google Scholar
Cai, C. et al. Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J. Biol. Chem.284, 15894–15902 (2009). CASPubMedPubMed Central Google Scholar
Zhu, H. et al. Polymerase transcriptase release factor (PTRF) anchors MG53 protein to cell injury site for initiation of membrane repair. J. Biol. Chem.286, 12820–12824 (2011). CASPubMedPubMed Central Google Scholar
Ohsawa, Y. et al. Muscular atrophy of caveolin 3-deficient mice is rescued by myostatin inhibition. J. Clin. Invest.116, 2924–2934 (2006). CASPubMedPubMed Central Google Scholar
Ohsawa, Y. et al. Overexpression of P104L mutant caveolin-3 in mice develops hypertrophic cardiomyopathy with enhanced contractility in association with increased endothelial nitric oxide synthase activity. Hum. Mol. Genet.13, 151–157 (2004). CASPubMed Google Scholar
Cerezo, A. et al. The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. Mol. Cell. Biol.29, 5046–5059 (2009). CASPubMedPubMed Central Google Scholar
Borza, C. M. et al. Integrin α1β1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase. J. Biol. Chem.285, 40114–40124 (2010). CASPubMedPubMed Central Google Scholar
Wary, K. K., Mariotti, A., Zurzolo, C. & Giancotti, F. G. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent growth. Cell94, 625–634 (1998). CASPubMed Google Scholar
Du, J. et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc. Natl Acad. Sci. USA108, 9466–9471 (2011). CASPubMedPubMed Central Google Scholar
Goetz, J. G. et al. Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J. Cell Biol.180, 1261–1275 (2008). CASPubMedPubMed Central Google Scholar
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell8, 241–254 (2005). CASPubMed Google Scholar
Sanz-Moreno, V. et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell20, 229–245 (2011). CASPubMed Google Scholar
Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell139, 891–906 (2009). CASPubMedPubMed Central Google Scholar
Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biol.9, 1392–1400 (2007). CASPubMed Google Scholar
Couet, J., Li, S., Okamoto, T., Ikezu, T. & Lisanti, M. P. Identification of peptide and protein ligands for the caveolin- scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J. Biol. Chem.272, 6525–6533 (1997). CASPubMed Google Scholar
Okamoto, T., Schlegel, A., Scherer, P. E. & Lisanti, M. P. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem.273, 5419–5422 (1998). CASPubMed Google Scholar
Collins, B. M., Davis, M. J., Hancock, J. F. & Parton, R. G. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin–protein interactions? Dev. Cell23, 11–20 (2012). CASPubMedPubMed Central Google Scholar
Byrne, D. P., Dart, C. & Rigden, D. J. Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS ONE7, e44879 (2012). CASPubMedPubMed Central Google Scholar
Garcia-Cardena, G. et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J. Biol. Chem.272, 25437–25440 (1997). CASPubMed Google Scholar
Sowa, G., Pypaert, M. & Sessa, W. C. Distinction between signaling mechanisms in lipid rafts versus caveolae. Proc. Natl Acad. Sci. USA98, 14072–14077 (2001). CASPubMedPubMed Central Google Scholar
Bucci, M. et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Med.6, 1362–1367 (2000). CASPubMed Google Scholar
Place, A. T. et al. Cooperative role of caveolin-1 and C-terminal Src kinase binding protein in C-terminal Src kinase-mediated negative regulation of c-Src. Mol. Pharmacol.80, 665–672 (2011). CASPubMedPubMed Central Google Scholar
Kronstein, R. et al. Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovasc. Res.93, 130–140 (2012). CASPubMed Google Scholar
Blouin, C. M. et al. Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes59, 600–610 (2010). CASPubMed Google Scholar
Mattsson, C. L., Csikasz, R. I., Shabalina, I. G., Nedergaard, J. & Cannon, B. Caveolin-1-ablated mice survive in cold by nonshivering thermogenesis despite desensitized adrenergic responsiveness. Am. J. Physiol. Endocrinol. Metab.299, e374–e383 (2010). CASPubMed Google Scholar
Gonzalez-Munoz, E. et al. Caveolin-1 loss of function accelerates glucose transporter 4 and insulin receptor degradation in 3T3-L1 adipocytes. Endocrinology150, 3493–3502 (2009). CASPubMed Google Scholar
Hernandez-Deviez, D. J. et al. Caveolin regulates endocytosis of the muscle repair protein, dysferlin. J. Biol. Chem.283, 6476–6488 (2008). CASPubMed Google Scholar
Marchiando, A. M. et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J. Cell Biol.189, 111–126 (2010). CASPubMedPubMed Central Google Scholar
Orlichenko, L. et al. Caveolae mediate growth factor-induced disassembly of adherens junctions to support tumor cell dissociation. Mol. Biol. Cell20, 4140–4152 (2009). CASPubMedPubMed Central Google Scholar
Upla, P. et al. Clustering induces a lateral redistribution of α2 β1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol. Biol. Cell15, 625–636 (2004). CASPubMedPubMed Central Google Scholar
Shi, F. & Sottile, J. Caveolin-1-dependent β1 integrin endocytosis is a critical regulator of fibronectin turnover. J. Cell Sci.121, 2360–2371 (2008). CASPubMed Google Scholar
Arjonen, A., Alanko, J., Veltel, S. & Ivaska, J. Distinct recycling of active and inactive β1 integrins. Traffic13, 610–625 (2012). CASPubMedPubMed Central Google Scholar
Pellinen, T. et al. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev. Cell15, 371–385 (2008). CASPubMed Google Scholar
Guo, J. et al. Cell surface expression of human ether-a-go-go-related gene (hERG) channels is regulated by caveolin-3 protein via the ubiquitin ligase Nedd4-2. J. Biol. Chem.287, 33132–33141 (2012). CASPubMedPubMed Central Google Scholar
Lee, I. H. et al. The activity of the epithelial sodium channels is regulated by caveolin-1 via a Nedd4-2-dependent mechanism. J. Biol. Chem.284, 12663–12669 (2009). CASPubMedPubMed Central Google Scholar
Otsu, K. et al. Caveolin gene transfer improves glucose metabolism in diabetic mice. Am. J. Physiol. Cell Physiol.298, C450–C456 (2010). CASPubMed Google Scholar
Gervasio, O. L., Whitehead, N. P., Yeung, E. W., Phillips, W. D. & Allen, D. G. TRPC1 binds to caveolin-3 and is regulated by Src kinase — role in Duchenne muscular dystrophy. J. Cell Sci.121, 2246–2255 (2008). CASPubMed Google Scholar
Langlois, S., Cowan, K. N., Shao, Q., Cowan, B. J. & Laird, D. W. Caveolin-1 and -2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol. Biol. Cell19, 912–928 (2008). CASPubMedPubMed Central Google Scholar
Pani, B. et al. Activation of TRPC1 by STIM1 in ER–PM microdomains involves release of the channel from its scaffold caveolin-1. Proc. Natl Acad. Sci. USA106, 20087–20092 (2009). CASPubMedPubMed Central Google Scholar
Sundivakkam, P. C. et al. Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am. J. Physiol. Cell Physiol.296, C403–C413 (2009). CASPubMed Google Scholar
Fuhs, S. R. & Insel, P. A. Caveolin-3 undergoes SUMOylation by the SUMO E3 ligase PIASy: sumoylation affects G-protein-coupled receptor desensitization. J. Biol. Chem.286, 14830–14841 (2011). CASPubMedPubMed Central Google Scholar
Nethe, M. et al. Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. J. Cell Sci.123, 1948–1958 (2010). CASPubMed Google Scholar
Hezel, M., de Groat, W. C. & Galbiati, F. Caveolin-3 promotes nicotinic acetylcholine receptor clustering and regulates neuromuscular junction activity. Mol. Biol. Cell21, 302–310 (2010). CASPubMedPubMed Central Google Scholar
Isshiki, M. et al. Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Proc. Natl Acad. Sci. USA95, 5009–5014 (1998). CASPubMedPubMed Central Google Scholar
Yamamoto, K. et al. Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J. Cell Sci.124, 3477–3483 (2011). Demonstrates that localized release of calcium in response to shear stress occurs in caveolin-rich areas of the plasma membrane and is lost in CAV1-deficient cells. CASPubMed Google Scholar
Vassilopoulos, S. et al. Caveolin 3 is associated with the calcium release complex and is modified via in vivo triadin modification. Biochemistry49, 6130–6135 (2010). CASPubMed Google Scholar
Adebiyi, A., Narayanan, D. & Jaggar, J. H. Caveolin-1 assembles type 1 inositol 1,4,5-trisphosphate receptors and canonical transient receptor potential 3 channels into a functional signaling complex in arterial smooth muscle cells. J. Biol. Chem.286, 4341–4348 (2011). CASPubMed Google Scholar
Hoffmann, C. et al. Caveolin limits membrane microdomain mobility and integrin-mediated uptake of fibronectin-binding pathogens. J. Cell Sci.123, 4280–4291 (2010). Provides evidence for a general effect of CAV1 on membrane properties as indicated by the effects on membrane microdomain mobility and the consequences for pathogen entry. CASPubMed Google Scholar
Gaus, K., Le Lay, S., Balasubramanian, N. & Schwartz, M. A. Integrin-mediated adhesion regulates membrane order. J. Cell Biol.174, 725–734 (2006). CASPubMedPubMed Central Google Scholar
Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol.1, 98–105 (1999). CASPubMed Google Scholar
Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science327, 46–50 (2010). CASPubMed Google Scholar
Carozzi, A. J. et al. Inhibition of lipid raft-dependent signaling by a dystrophy-associated mutant of caveolin-3. J. Biol. Chem.277, 17944–17949 (2002). CASPubMed Google Scholar
Kirkham, M. et al. Evolutionary analysis and molecular dissection of caveola biogenesis. J. Cell Sci.121, 2075–2086 (2008). CASPubMed Google Scholar
Ortegren, U. et al. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur. J. Biochem.271, 2028–2036 (2004). PubMed Google Scholar
Sharma, D. K. et al. The glycosphingolipid, lactosylceramide, regulates β1-integrin clustering and endocytosis. Cancer Res.65, 8233–8241 (2005). CASPubMed Google Scholar
Sharma, D. K. et al. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J. Biol. Chem.278, 7564–7572 (2003). CASPubMed Google Scholar
Prinetti, A. et al. GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology20, 62–77 (2010). CASPubMed Google Scholar
Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA92, 10339–10343 (1995). CASPubMedPubMed Central Google Scholar
Trigatti, B. L., Anderson, R. G. & Gerber, G. E. Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun.255, 34–39 (1999). CASPubMed Google Scholar
Brasaemle, D. L., Dolios, G., Shapiro, L. & Wang, R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem.279, 46835–46842 (2004). CASPubMed Google Scholar
Martin, S. & Parton, R. G. Caveolin, cholesterol, and lipid bodies. Semin. Cell Dev. Biol.16, 163–174 (2005). CASPubMed Google Scholar
Pol, A. et al. Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol. Biol. Cell15, 99–110 (2004). CASPubMedPubMed Central Google Scholar
Pol, A. et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J. Cell Biol.152, 1057–1070 (2001). CASPubMedPubMed Central Google Scholar
Bosch, M. et al. Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr. Biol.21, 681–686 (2011). Identifies mitochondrial dysfunction due to aberrant cholesterol accumulation as a common feature in CAV1-deficient cells. CASPubMedPubMed Central Google Scholar
Asterholm, I. W., Mundy, D. I., Weng, J., Anderson, R. G. & Scherer, P. E. Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell. Metab.15, 171–185 (2012). PubMedPubMed Central Google Scholar
Meshulam, T., Simard, J. R., Wharton, J., Hamilton, J. A. & Pilch, P. F. Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry45, 2882–2893 (2006). CASPubMed Google Scholar
Simard, J. R. et al. Caveolins sequester fatty acids on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation and protect cells from lipotoxicity. J. Lipid Res.51, 914–922 (2009). Google Scholar
Pohl, J. et al. Long-chain fatty acid uptake into adipocytes depends on lipid raft function. Biochemistry43, 4179–4187 (2004). CASPubMed Google Scholar
Cohen, A. W. et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol.285, C222–C235 (2003). CASPubMed Google Scholar
Frank, P. G. et al. Caveolin-1 and regulation of cellular cholesterol homeostasis. Am. J. Physiol. Heart Circ. Physiol.291, H677–H686 (2006). CASPubMed Google Scholar
Cohen, A. W. et al. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes53, 1261–1270 (2004). CASPubMed Google Scholar
Fernandez, M. A. et al. Caveolin-1 is essential for liver regeneration. Science313, 1628–1632 (2006). CASPubMed Google Scholar
Siasos, G. et al. Adiponectin and cardiovascular disease: mechanisms and new therapeutic approaches. Curr. Med. Chem.19, 1193–1209 (2012). CASPubMed Google Scholar
Pilch, P. F. & Liu, L. Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol. Metab.22, 318–324 (2011). CASPubMedPubMed Central Google Scholar
Martin, S. et al. Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS ONE7, e46242 (2012). CASPubMedPubMed Central Google Scholar
Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol.29, 1575–1591 (2009). CASPubMed Google Scholar
Berchtold, D. et al. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nature Cell Biol.14, 542–547 (2012). In yeast cells, mechanical stretching of the plasma membrane causes redistribution of Slm proteins and activation of TORC2, leading to changes in the lipid composition of the plasma membrane possibly analogous to those occurring in mammalian cells upon disassembly of caveolae. CASPubMed Google Scholar
Styers, M. L., O'Connor, A. K., Grabski, R., Cormet-Boyaka, E. & Sztul, E. Depletion of β-COP reveals a role for COP-I in compartmentalization of secretory compartments and in biosynthetic transport of caveolin-1. Am. J. Physiol. Cell Physiol.294, C1485–C1498 (2008). CASPubMed Google Scholar
Pol, A. et al. Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol. Biol. Cell16, 2091–2105 (2005). CASPubMedPubMed Central Google Scholar
Tagawa, A. et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol.170, 769–779 (2005). CASPubMedPubMed Central Google Scholar
Manninen, A. et al. Caveolin-1 is not essential for biosynthetic apical membrane transport. Mol. Cell. Biol.25, 10087–10096 (2005). CASPubMedPubMed Central Google Scholar
Aung, C. S., Hill, M. M., Bastiani, M., Parton, R. G. & Parat, M. O. PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. Eur. J. Cell Biol.90, 136–142 (2011). CASPubMed Google Scholar
Gould, M. L., Williams, G. & Nicholson, H. D. Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. Prostate70, 1609–1621 (2010). CASPubMed Google Scholar
Doyon, J. B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biol.13, 331–337 (2011). CASPubMed Google Scholar
Nassoy, P. & Lamaze, C. Stressing caveolae new role in cell mechanics. Trends Cell Biol.22, 381–389 (2012). PubMed Google Scholar
Vorgerd, M. et al. A sporadic case of rippling muscle disease caused by a de novo caveolin-3 mutation. Neurology57, 2273–2277 (2001). CASPubMed Google Scholar
McNally, E. M. et al. Caveolin-3 in muscular dystrophy. Hum. Mol. Genet.7, 871–877 (1998). CASPubMed Google Scholar
Woodman, S. E., Sotgia, F., Galbiati, F., Minetti, C. & Lisanti, M. P. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology62, 538–543 (2004). CASPubMed Google Scholar
Minetti, C. et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nature Genet.18, 365–368 (1998). CASPubMed Google Scholar
Matsuda, C. et al. The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum. Mol. Genet.10, 1761–1766 (2001). CASPubMed Google Scholar
Bansal, D. & Campbell, K. P. Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol.14, 206–213 (2004). CASPubMed Google Scholar
Vatta, M. et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation114, 2104–2112 (2006). CASPubMed Google Scholar
Cao, H., Alston, L., Ruschman, J. & Hegele, R. A. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis.7, 3 (2008). PubMedPubMed Central Google Scholar
Dwianingsih, E. K. et al. A Japanese child with asymptomatic elevation of serum creatine kinase shows _PTRF_-CAVIN mutation matching with congenital generalized lipodystrophy type 4. Mol. Genet. Metab.101, 233–237 (2010). CASPubMed Google Scholar
Shastry, S. et al. Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am. J. Med. Genet. A152A, 2245–2253 (2010). CASPubMedPubMed Central Google Scholar
Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B. & Schnitzer, J. E. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene16, 1391–1397 (1998). CASPubMed Google Scholar
Capozza, F. et al. Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am. J. Pathol.162, 2029–2039 (2003). CASPubMedPubMed Central Google Scholar
Witkiewicz, A. K. et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am. J. Pathol.174, 2023–2034 (2009). CASPubMedPubMed Central Google Scholar
Koleske, A. J., Baltimore, D. & Lisanti, M. P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl Acad. Sci. USA92, 1381–1385 (1995). CASPubMedPubMed Central Google Scholar
Sunaga, N. et al. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res.64, 4277–4285 (2004). CASPubMed Google Scholar
Patani, N. et al. Non-existence of caveolin-1 gene mutations in human breast cancer. Breast Cancer Res. Treat.131, 307–310 (2012). CASPubMed Google Scholar
Hayashi, K. et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res.61, 2361–2364 (2001). CASPubMed Google Scholar
Thompson, T. C., Timme, T. L., Li, L. & Goltsov, A. Caveolin-1, a metastasis-related gene that promotes cell survival in prostate cancer. Apoptosis4, 233–237 (1999). CASPubMed Google Scholar
Yang, G., Timme, T. L., Frolov, A., Wheeler, T. M. & Thompson, T. C. Combined c-Myc and caveolin-1 expression in human prostate carcinoma predicts prostate carcinoma progression. Cancer103, 1186–1194 (2005). CASPubMed Google Scholar
Capozza, F. et al. Genetic ablation of Cav1 differentially affects melanoma tumor growth and metastasis in mice. Role of Cav1 in Shh heterotypic signaling and transendothelial migration. Cancer Res.72, 2262–2274 (2012). CASPubMedPubMed Central Google Scholar
Trimmer, C. et al. CAV1 inhibits metastatic potential in melanomas through suppression of the integrin/Src/FAK signaling pathway. Cancer Res.70, 7489–7499 (2010). CASPubMedPubMed Central Google Scholar
Xu, X. L. et al. Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res.61, 7943–7949 (2001). CASPubMed Google Scholar
Zochbauer-Muller, S. et al. Expression of the candidate tumor suppressor gene hSRBC is frequently lost in primary lung cancers with and without DNA methylation. Oncogene24, 6249–6255 (2005). PubMed Google Scholar
Bai, L. et al. Down-regulation of the cavin family proteins in breast cancer. J. Cell Biochem.113, 322–328 (2012). CASPubMed Google Scholar
Parton, R. G., Hanzal-Bayer, M. & Hancock, J. F. Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J. Cell Sci.119, 787–796 (2006). CASPubMed Google Scholar