Potten, C. S., Gandara, R., Mahida, Y. R., Loeffler, M. & Wright, N. A. The stem cells of small intestinal crypts: where are they? Cell Prolif.42, 731–750 (2009). ArticleCASPubMedPubMed Central Google Scholar
Blanpain, C. & Simons, B. D. Unravelling stem cell dynamics by lineage tracing. Nature Rev. Mol. Cell Biol.14, 489–502 (2013). ArticleCAS Google Scholar
Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science340, 1190–1194 (2013). ArticleCASPubMed Google Scholar
Barker, N., Bartfeld, S. & Clevers, H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell7, 656–670 (2010). ArticleCASPubMed Google Scholar
Buczacki, S. J. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature495, 65–69 (2013). Identified LRCs as Paneth cell progenitors capable of reverting to stem cells after damage. ArticleCASPubMed Google Scholar
Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature478, 255–259 (2011). Demonstrated that the intestinal epithelium is able to survive ablation of the LGR5+ stem cell compartment, indicating the existence of reserve stem cells. ArticleCASPubMedPubMed Central Google Scholar
Yilmaz, O. H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature486, 490–495 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gerbe, F., Legraverend, C. & Jay, P. The intestinal epithelium tuft cells: specification and function. Cell. Mol. Life Sci.69, 2907–2917 (2012). ArticleCASPubMedPubMed Central Google Scholar
Watson, A. J. & Hughes, K. R. TNF-α-induced intestinal epithelial cell shedding: implications for intestinal barrier function. Ann. NY Acad. Sci.1258, 1–8 (2012). ArticleCASPubMed Google Scholar
Bjerknes, M. & Cheng, H. Gastrointestinal stem cells. II. Intestinal stem cells. Am. J. Physiol. Gastrointest. Liver Physiol.289, G381–G387 (2005). ArticleCASPubMed Google Scholar
Ireland, H., Houghton, C., Howard, L. & Winton, D. J. Cellular inheritance of a Cre-activated reporter gene to determine Paneth cell longevity in the murine small intestine. Dev. Dyn.233, 1332–1336 (2005). ArticleCASPubMed Google Scholar
Grosse, A. S. et al. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis. Development138, 4423–4432 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gregorieff, A. & Clevers, H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev.19, 877–890 (2005). ArticleCASPubMed Google Scholar
Madison, B. B. et al. Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development132, 279–289 (2005). ArticleCASPubMed Google Scholar
Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet.19, 379–383 (1998). ArticleCASPubMed Google Scholar
Cheng, H. & Bjerknes, M. Whole population cell kinetics and postnatal development of the mouse intestinal epithelium. Anat. Rec.211, 420–426 (1985). ArticleCASPubMed Google Scholar
Mustata, R. C. et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep.5, 421–432 (2013). ArticleCASPubMed Google Scholar
Itzkovitz, S., Blat, I. C., Jacks, T., Clevers, H. & van Oudenaarden, A. Optimality in the development of intestinal crypts. Cell148, 608–619 (2012). ArticleCASPubMedPubMed Central Google Scholar
Fordham, R. P. et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cellhttp://dx.doi.org/10.1016/j.stem.2013.09.015 (2013).
Ponder, B. A., Festing, M. F. & Wilkinson, M. M. An allelic difference determines reciprocal patterns of expression of binding sites for Dolichos biflorus lectin in inbred strains of mice. J. Embryol. Exp. Morphol.87, 229–239 (1985). CASPubMed Google Scholar
Schmidt, G. H., Garbutt, D. J., Wilkinson, M. M. & Ponder, B. A. Clonal analysis of intestinal crypt populations in mouse aggregation chimaeras. J. Embryol. Exp. Morphol.85, 121–130 (1985). CASPubMed Google Scholar
Ponder, B. A. et al. Derivation of mouse intestinal crypts from single progenitor cells. Nature313, 689–691 (1985). Showed that adult crypts harbour clonal stem cell populations derived from a single progenitor cell. ArticleCASPubMed Google Scholar
Hermiston, M. L., Green, R. P. & Gordon, J. I. Chimeric-transgenic mice represent a powerful tool for studying how the proliferation and differentiation programs of intestinal epithelial cell lineages are regulated. Proc. Natl Acad. Sci. USA90, 8866–8870 (1993). ArticleCASPubMedPubMed Central Google Scholar
Bjerknes, M. & Cheng, H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology116, 7–14 (1999). ArticleCASPubMed Google Scholar
Gutierrez-Gonzalez, L. et al. Analysis of the clonal architecture of the human small intestinal epithelium establishes a common stem cell for all lineages and reveals a mechanism for the fixation and spread of mutations. J. Pathol.217, 489–496 (2009). ArticleCASPubMed Google Scholar
Greaves, L. C. et al. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc. Natl Acad. Sci. USA103, 714–719 (2006). ArticleCASPubMedPubMed Central Google Scholar
Taylor, R. W. et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest.112, 1351–1360 (2003). Established the clonality of human crypt stem cell populations by examining mitochondrial mutation patterns. ArticleCASPubMedPubMed Central Google Scholar
Novelli, M. R. et al. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science272, 1187–1190 (1996). Used chimeric human patient cells to show that human colonic crypts are maintained by a clonal population of adult stem cells. ArticleCASPubMed Google Scholar
Hendry, J. H., Roberts, S. A. & Potten, C. S. The clonogen content of murine intestinal crypts: dependence on radiation dose used in its determination. Radiat. Res.132, 115–119 (1992). ArticleCASPubMed Google Scholar
Potten, C. S. & Loeffler, M. A comprehensive model of the crypts of the small intestine of the mouse provides insight into the mechanisms of cell migration and the proliferation hierarchy. J. Theor. Biol.127, 381–391 (1987). ArticleCASPubMed Google Scholar
Bjerknes, M. & Cheng, H. The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am. J. Anat.160, 77–91 (1981). ArticleCASPubMed Google Scholar
Kozar, S. et al. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell13, 626–633 (2013). ArticleCASPubMed Google Scholar
Winton, D. J., Blount, M. A. & Ponder, B. A. A clonal marker induced by mutation in mouse intestinal epithelium. Nature333, 463–466 (1988). Reported the existence of multipotent, self-renewing stem cells in the adult small intestine, as shown by the use of a random somatic mutation approach. ArticleCASPubMed Google Scholar
Cairnie, A. B., Lamerton, L. F. & Steel, G. G. Cell proliferation studies in the intestinal epithelium of the rat. I. Determination of the kinetic parameters. Exp. Cell Res.39, 528–538 (1965). ArticleCASPubMed Google Scholar
Qiu, J. M., Roberts, S. A. & Potten, C. S. Cell migration in the small and large bowel shows a strong circadian rhythm. Epithelial Cell Biol.3, 137–148 (1994). Together with reference 37, this paper examined cell migration rates in the intestinal epithelium and proposed position +4 as the origin of cell migration. CASPubMed Google Scholar
Potten, C. S., Booth, C. & Pritchard, D. M. The intestinal epithelial stem cell: the mucosal governor. Int. J. Exp. Pathol.78, 219–243 (1997). ArticleCASPubMedPubMed Central Google Scholar
Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am. J. Anat.141, 537–561 (1974). Part of a seminal series of papers that described a probable common CBC cell origin for the four main epithelial cell lineages. ArticleCASPubMed Google Scholar
Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am. J. Anat.141, 461–479 (1974). ArticleCASPubMed Google Scholar
Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am. J. Anat.141, 503–519 (1974). ArticleCASPubMed Google Scholar
Cheng, H. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. IV. Paneth cells. Am. J. Anat.141, 521–535 (1974). ArticleCASPubMed Google Scholar
Cheng, H. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. II. Mucous cells. Am. J. Anat.141, 481–501 (1974). ArticleCASPubMed Google Scholar
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature449, 1003–1007 (2007). Reported the validation of LGR5 as a marker of CBC stem cells in the small intestine and colon usingin vivolineage tracing. ArticleCASPubMed Google Scholar
Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature459, 262–265 (2009). Described a novelex vivoculture system capable of sustaining the long-term growth of near-physiological intestinal epithelia from isolated LGR5+ stem cells. ArticleCASPubMed Google Scholar
Potten, C. S. Extreme sensitivity of some intestinal crypt cells to X and y-irradiation. Nature269, 518–521 (1977). Analysed the sensitivity of epithelial populations at various locations within the crypt to irradiation, showing that +4 cells are highly radiosensitive. ArticleCASPubMed Google Scholar
Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nature Med.17, 1225–1227 (2011). ArticleCASPubMed Google Scholar
Munoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J.31, 3079–3091 (2012). ArticleCASPubMedPubMed Central Google Scholar
Van der Flier, L. G. et al. The intestinal Wnt/TCF signature. Gastroenterology132, 628–632 (2007). ArticleCASPubMed Google Scholar
van der Flier, L. G. et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell136, 903–912 (2009). ArticleCASPubMed Google Scholar
de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature476, 293–297 (2011). ArticleCASPubMed Google Scholar
Carmon, K. S., Gong, X., Lin, Q., Thomas, A. & Liu, Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. Proc. Natl Acad. Sci. USA108, 11452–11457 (2011). ArticlePubMedPubMed Central Google Scholar
Glinka, A. et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep.12, 1055–1061 (2011). ArticleCASPubMedPubMed Central Google Scholar
Koo, B.-K. et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature488, 665–669 (2012). ArticleCASPubMed Google Scholar
Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature485, 195–200 (2012). ArticleCASPubMed Google Scholar
Fafilek, B. et al. Troy, a tumor necrosis factor receptor family member, interacts with lgr5 to inhibit wnt signaling in intestinal stem cells. Gastroenterology144, 381–391 (2013). ArticleCASPubMed Google Scholar
Chen, P. H., Chen, X., Lin, Z., Fang, D. & He, X. The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev.27, 1345–1350 (2013). ArticleCASPubMedPubMed Central Google Scholar
Peng, W. C. et al. Structure of stem cell growth factor R-spondin 1 in complex with the ectodomain of its receptor LGR5. Cell Rep.3, 1885–1892 (2013). ArticleCASPubMed Google Scholar
Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell143, 134–144 (2010). ArticleCASPubMed Google Scholar
Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell replacement follows a pattern of neutral drift. Science330, 822–825 (2010). References 64 and 65 report the use of multicolor tracing and computer modelling to examine the population dynamics ofLgr5+ stem cells in the small intestine ArticleCASPubMed Google Scholar
Quyn, A. J. et al. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell6, 175–181 (2010). ArticleCASPubMed Google Scholar
Bellis, J. et al. The tumor suppressor Apc controls planar cell polarities central to gut homeostasis. J. Cell Biol.198, 331–341 (2012). ArticleCASPubMedPubMed Central Google Scholar
Escobar, M. et al. Intestinal epithelial stem cells do not protect their genome by asymmetric chromosome segregation. Nature Commun.2, 258 (2011). ArticleCAS Google Scholar
Schepers, A. G., Vries, R., van den Born, M., van de Wetering, M. & Clevers, H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J.30, 1104–1109 (2011). ArticleCASPubMedPubMed Central Google Scholar
Steinhauser, M. L. et al. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature481, 516–519 (2012). ArticleCASPubMedPubMed Central Google Scholar
Buske, P. et al. On the biomechanics of stem cell niche formation in the gut — modelling growing organoids. FEBS J.279, 3475–3487 (2012). ArticleCASPubMed Google Scholar
Buske, P. et al. A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS Comput. Biol.7, e1001045 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kaaij, L. T. et al. DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus. Genome Biol.14, R50 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sakamori, R. et al. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice. J. Clin. Invest.122, 1052–1065 (2012). ArticleCASPubMedPubMed Central Google Scholar
Heijmans, J. et al. ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep.3, 1128–1139 (2013). ArticleCASPubMed Google Scholar
Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet.40, 915–920 (2008). Reported the first validation of a +4 marker byin vivolineage tracing. ArticleCASPubMed Google Scholar
Yan, K. S. et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Natl Acad. Sci. USA109, 466–471 (2012). ArticlePubMed Google Scholar
Itzkovitz, S. et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nature Cell Biol.14, 106–114 (2012). ArticleCAS Google Scholar
Montgomery, R. K. et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc. Natl Acad. Sci. USA108, 179–184 (2011). ArticlePubMed Google Scholar
Powell, A. E. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell149, 146–158 (2012). ArticleCASPubMedPubMed Central Google Scholar
Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science334, 1420–1424 (2011). Showed that +4 stem cells can interconvert with LGR5+ stem cells. ArticleCASPubMedPubMed Central Google Scholar
Jensen, K. B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell4, 427–439 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wong, V. W. et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biol.14, 401–408 (2012). ArticleCASPubMed Google Scholar
Breault, D. T. et al. Generation of mTert–GFP mice as a model to identify and study tissue progenitor cells. Proc. Natl Acad. Sci. USA105, 10420–10425 (2008). ArticlePubMedPubMed Central Google Scholar
Roberts, S. A., Hendry, J. H. & Potten, C. S. Deduction of the clonogen content of intestinal crypts: a direct comparison of two-dose and multiple-dose methodologies. Radiat. Res.141, 303–308 (1995). ArticleCASPubMed Google Scholar
Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature469, 415–418 (2011). ArticleCASPubMed Google Scholar
van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biol.14, 1099–1104 (2012). Showed that DLL1+ secretory progenitors are the reserve stem cell population activated in response to injury. ArticleCASPubMed Google Scholar
Kemper, K. et al. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells30, 2378–2386 (2012). ArticleCASPubMed Google Scholar
Garabedian, E. M., Roberts, L. J., McNevin, M. S. & Gordon, J. I. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. Biol. Chem.272, 23729–23740 (1997). ArticleCASPubMed Google Scholar
Durand, A. et al. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc. Natl Acad. Sci. USA109, 8965–8970 (2012). ArticlePubMedPubMed Central Google Scholar
Kim, T. H., Escudero, S. & Shivdasani, R. A. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc. Natl Acad. Sci. USA109, 3932–3937 (2012). ArticleCASPubMedPubMed Central Google Scholar
Farin, H. F., Van Es, J. H. & Clevers, H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology143, 1518–1529.e7 (2012). ArticleCASPubMed Google Scholar
Rothenberg, M. E. et al. Identification of a cKit+ colonic crypt base secretory cell that supports Lgr5+ stem cells in mice. Gastroenterology142, 1195–1205.e6 (2012). ArticleCASPubMed Google Scholar
Blache, P. et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J. Cell Biol.166, 37–47 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bastide, P. et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J. Cell Biol.178, 635–648 (2007). ArticleCASPubMedPubMed Central Google Scholar
Formeister, E. J. et al. Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. Am. J. Physiol. Gastrointest. Liver Physiol.296, G1108–G1118 (2009). ArticleCASPubMedPubMed Central Google Scholar
Van Landeghem, L. et al. Activation of two distinct Sox9-EGFP-expressing intestinal stem cell populations during crypt regeneration after irradiation. Am. J. Physiol. Gastrointest. Liver Physiol.302, G1111–G1132 (2012). ArticleCASPubMedPubMed Central Google Scholar
Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nature Genet.43, 34–41 (2011). ArticleCASPubMed Google Scholar
Gracz, A. D., Ramalingam, S. & Magness, S. T. Sox9 expression marks a subset of CD24-expressing small intestine epithelial stem cells that form organoids in vitro. Am. J. Physiol. Gastrointest Liver Physiol.298, G590–G600 (2010). ArticleCASPubMedPubMed Central Google Scholar
Potten, C. S. et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation71, 28–41 (2003). ArticleCASPubMed Google Scholar
Kayahara, T. et al. Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett.535, 131–135 (2003). ArticleCASPubMed Google Scholar
Cambuli, F. M., Rezza, A., Nadjar, J. & Plateroti, M. Musashi1-eGFP mice, a new tool for differential isolation of the intestinal stem cell populations. Stem Cells31, 2273–2278 (2013). ArticleCAS Google Scholar
Takeda, H., Koso, H., Tessarollo, L., Copeland, N. G. & Jenkins, N. A. Musashi1-CreERT2: a new cre line for conditional mutagenesis in neural stem cells. Genesis51, 128–134 (2013). ArticleCASPubMed Google Scholar
O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007). ArticleCASPubMed Google Scholar
Shmelkov, S. V. et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J. Clin. Invest.118, 2111–2120 (2008). CASPubMedPubMed Central Google Scholar
Yin, A. H. et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood90, 5002–5012 (1997). CASPubMed Google Scholar
Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature457, 603–607 (2009). ArticleCASPubMed Google Scholar
Snippert, H. J. et al. Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology136, 2187–2194 (2009). ArticleCASPubMed Google Scholar
Barker, N., van Oudenaarden, A. & Clevers, H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell11, 452–460 (2012). ArticleCASPubMed Google Scholar
He, X. C. et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nature Genet.39, 189–198 (2007). ArticleCASPubMed Google Scholar
He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nature Genet.36, 1117–1121 (2004). ArticleCASPubMed Google Scholar
Bjerknes, M. & Cheng, H. Re-examination of P-PTEN staining patterns in the intestinal crypt. Nature Genet.37, 1016–1017; author reply 1017–1018 (2005). ArticleCASPubMed Google Scholar
Demidov, O. N. et al. Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine. Cell Stem Cell1, 180–190 (2007). ArticleCASPubMed Google Scholar
Giannakis, M. et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J. Biol. Chem.281, 11292–11300 (2006). ArticleCASPubMed Google Scholar
May, R. et al. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells26, 630–637 (2008). ArticlePubMed Google Scholar
May, R. et al. Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively. Stem Cells27, 2571–2579 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gerbe, F., Brulin, B., Makrini, L., Legraverend, C. & Jay, P. DCAMKL-1 expression identifies Tuft cells rather than stem cells in the adult mouse intestinal epithelium. Gastroenterology137, 2179–2180; author reply 2180–2181 (2009). ArticleCASPubMed Google Scholar
Nakanishi, Y. et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nature Genet.45, 98–103 (2013). ArticleCASPubMed Google Scholar
Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology141, 1762–1772 (2011). ArticleCASPubMed Google Scholar
Sala, F. G. et al. A multicellular approach forms a significant amount of tissue-engineered small intestine in the mouse. Tissue Eng. Part A17, 1841–1850 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nature Med.18, 618–623 (2012). First demonstration that intestinal epithelia culturedex vivocan be used to repair damaged colonic epithelia in live mice. ArticleCASPubMed Google Scholar
Magney, J. E., Erlandsen, S. L., Bjerknes, M. L. & Cheng, H. Morphology of the basal surface and evidence for paracrinelike cells. 177, 43–53 (1986).