Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol.14, 1025–1040 (2007). ArticleCAS Google Scholar
Musselman, C. A., Lalonde, M.-E., Côté, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nature Struct. Mol. Biol.19, 1218–1227 (2012). ArticleCAS Google Scholar
Xu, F., Zhang, K. & Grunstein, M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell121, 375–385 (2005). ArticleCASPubMed Google Scholar
Ozdemir, A. Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae. J. Biol. Chem.280, 25949–25952 (2005). ArticleCASPubMed Google Scholar
Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature436, 294–298 (2005). ArticleCASPubMed Google Scholar
Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature389, 251–260 (1997). ArticleCASPubMed Google Scholar
Hyland, E. M. et al. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol. Cell. Biol.25, 10060–10070 (2005). ArticleCASPubMedPubMed Central Google Scholar
Xu, F., Zhang, Q., Zhang, K., Xie, W. & Grunstein, M. Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Mol. Cell27, 890–900 (2007). ArticleCASPubMedPubMed Central Google Scholar
Iwasaki, W. et al. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains. Biochemistry50, 7822–7832 (2011). ArticleCASPubMed Google Scholar
Neumann, H. et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol. Cell36, 153–163 (2009). ArticleCASPubMedPubMed Central Google Scholar
Watanabe, S. et al. Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochim. Biophys. Acta1799, 480–486 (2010). ArticleCASPubMedPubMed Central Google Scholar
Simon, M. et al. Histone fold modifications control nucleosome unwrapping and disassembly. Proc. Natl Acad. Sci. USA108, 12711–12716 (2011). ArticleCASPubMedPubMed Central Google Scholar
Casadio, F., Lu, X., Pollock, S. B. & LeRoy, G. H3R42me2a is a histone modification with positive transcriptional effects. Proc. Natl Acad. Sci. USA110, 14894–14899 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hyland, E. M. et al. An evolutionarily 'young' lysine residue in histone H3 attenuates transcriptional output in Saccharomyces cerevisiae. Genes Dev.25, 1306–1319 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ferreira, H., Somers, J., Webster, R., Flaus, A. & Owen-Hughes, T. Histone tails and the H3 αN helix regulate nucleosome mobility and stability. Mol. Cell. Biol.27, 4037–4048 (2007). ArticleCASPubMedPubMed Central Google Scholar
Somers, J. & Owen-Hughes, T. Mutations to the histone H3 α N region selectively alter the outcome of ATP-dependent nucleosome-remodelling reactions. Nucleic Acids Res.37, 2504–2513 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hall, M. A. et al. High-resolution dynamic mapping of histone–DNA interactions in a nucleosome. Nature Struct. Mol. Biol.16, 124–129 (2009). ArticleCAS Google Scholar
Hainer, S. J. & Martens, J. A. Identification of histone mutants that are defective for transcription-coupled nucleosome occupancy. Mol. Cell. Biol.31, 3557–3568 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tropberger, P. et al. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell152, 859–872 (2013). ArticleCASPubMed Google Scholar
Di Cerbo, V. et al. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. eLife3, e01632 (2014). ArticlePubMedPubMed Central Google Scholar
Daujat, S. et al. H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nature Struct. Mol. Biol.16, 777–781 (2009). ArticleCAS Google Scholar
Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell146, 1016–1028 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L., Eugeni, E. E., Parthun, M. R. & Freitas, M. A. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma112, 77–86 (2003). ArticleCASPubMed Google Scholar
North, J. A. et al. Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res.39, 6465–6474 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev.9, 2770–2779 (1995). ArticleCASPubMed Google Scholar
North, J. A. et al. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res.42, 4922–4933 (2014). ArticleCASPubMedPubMed Central Google Scholar
Brown, D. T., Izard, T. & Misteli, T. Mapping the interaction surface of linker histone H10 with the nucleosome of native chromatin in vivo. Nature Struct. Mol. Biol.13, 250–255 (2006). ArticleCAS Google Scholar
Lu, X. et al. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nature Struct. Mol. Biol.15, 1122–1124 (2008). ArticleCAS Google Scholar
Ng, H. H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev.16, 1518–1527 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schübeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev.18, 1263–1271 (2004). ArticlePubMedPubMed Central Google Scholar
Vakoc, C. R., Sachdeva, M. M., Wang, H. & Blobel, G. A. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol. Cell. Biol.26, 9185–9195 (2006). ArticleCASPubMedPubMed Central Google Scholar
Steger, D. J. et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol.28, 2825–2839 (2008). ArticleCASPubMedPubMed Central Google Scholar
Verreault, A., Kaufman, P. D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell87, 95–104 (1996). ArticleCASPubMed Google Scholar
Winkler, D. D., Zhou, H., Dar, M. A., Zhang, Z. & Luger, K. Yeast CAF-1 assembles histone (H3-H4)2 tetramers prior to DNA deposition. Nucleic Acids Res.40, 10139–10149 (2012). ArticleCASPubMedPubMed Central Google Scholar
Huang, S. et al. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc. Natl Acad. Sci. USA102, 13410–13415 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zunder, R. M., Antczak, A. J., Berger, J. M. & Rine, J. Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing. Proc. Natl Acad. Sci. USA109, E144–E153 (2012). ArticleCASPubMed Google Scholar
Bowman, A., Ward, R., El-Mkami, H., Owen-Hughes, T. & Norman, D. G. Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res.38, 695–707 (2010). ArticleCASPubMed Google Scholar
English, C. M., Adkins, M. W., Carson, J. J., Churchill, M. E. A. & Tyler, J. K. Structural basis for the histone chaperone activity of Asf1. Cell127, 495–508 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tessarz, P. et al. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature505, 564–568 (2014). ArticleCASPubMed Google Scholar
VanDemark, A. P. et al. Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits. J. Biol. Chem.283, 5058–5068 (2008). ArticleCASPubMed Google Scholar
McCullough, L. et al. Insight into the mechanism of nucleosome reorganization from histone mutants that suppress defects in the FACT histone chaperone. Genetics188, 835–846 (2011). ArticleCASPubMedPubMed Central Google Scholar
Formosa, T. The role of FACT in making and breaking nucleosomes. Biochim. Biophys. Acta1819, 247–255 (2012). ArticleCASPubMed Google Scholar
Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol.7, 1121–1124 (2000). ArticleCASPubMed Google Scholar
Wittner, M. et al. Establishment and maintenance of alternative chromatin states at a multicopy gene locus. Cell145, 543–554 (2011). ArticleCASPubMed Google Scholar
Fierz, B. & Muir, T. W. Chromatin as an expansive canvas for chemical biology. Nature Chem. Biol.8, 417–427 (2012). ArticleCAS Google Scholar
Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature446, 338–341 (2007). ArticleCASPubMed Google Scholar
Andrews, A. J., Chen, X., Zevin, A., Stargell, L. A. & Luger, K. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. Mol. Cell37, 834–842 (2010). ArticleCASPubMedPubMed Central Google Scholar
De Koning, L., Corpet, A., Haber, J. E. & Almouzni, G. Histone chaperones: an escort network regulating histone traffic. Nature Struct. Mol. Biol.14, 997–1007 (2007). ArticleCAS Google Scholar
Hondele, M. et al. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature499, 111–114 (2013). ArticleCASPubMed Google Scholar
Flaus, A. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling. Curr. Opin. Genet. Dev.11, 148–154 (2001). ArticleCASPubMed Google Scholar
Hondele, M. & Ladurner, A. G. The chaperone–histone partnership: for the greater good of histone traffic and chromatin plasticity. Curr. Opin. Struct. Biol.21, 698–708 (2011). ArticleCASPubMed Google Scholar
Jin, C. et al. H3.3/H2A. Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nature Genet.41, 941–945 (2009). ArticleCASPubMed Google Scholar
Garcia, H. et al. Facilitates chromatin transcription complex is an 'accelerator' of tumor transformation and potential marker and target of aggressive cancers. CellRep.4, 159–173 (2013). CAS Google Scholar