Microbial cell individuality and the underlying sources of heterogeneity (original) (raw)

References

  1. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183?1186 (2002).
    CAS PubMed Google Scholar
  2. Sumner, E. R., Avery, A. M., Houghton, J. E., Robins, R. A. & Avery, S. V. Cell cycle- and age-dependent activation of Sod1p drives the formation of stress-resistant cell subpopulations within clonal yeast cultures. Mol. Microbiol. 50, 857?870 (2003). Showsthat heterogeneous copper resistance in S. cerevisiae is driven by cell cycle- and age-regulated activity of the Cu,Zn-superoxide dismutase.
    CAS PubMed Google Scholar
  3. Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538?559 (2004).
    CAS PubMed Central PubMed Google Scholar
  4. Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699?706 (2005).
    CAS PubMed Google Scholar
  5. Booth, I. R. Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78, 19?30 (2002).
    PubMed Google Scholar
  6. Sumner, E. R. & Avery, S. V. Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast Saccharomyces cerevisiae. Microbiology 148, 345?351 (2002).
    CAS PubMed Google Scholar
  7. Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics 167, 523?530 (2004).
    PubMed Central PubMed Google Scholar
  8. Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075?2078 (2005).
    CAS PubMed Google Scholar
  9. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477?483 (2000).
    CAS PubMed Google Scholar
  10. Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J. & Eisen, M. B. Noise minimization in eukaryotic gene expression. PLoS Biol. 2, 834?838 (2004).
    CAS Google Scholar
  11. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811?1814 (2004).
    CAS PubMed Central PubMed Google Scholar
  12. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet. 6, 451?464 (2005). A comprehensive review on the mechanisms of stochastic gene expression.
    CAS PubMed Google Scholar
  13. Raser, J. M. & O'Shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010?2013 (2005).
    CAS PubMed Central PubMed Google Scholar
  14. Arias, A. M. & Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nature Rev. Genet. 7, 34?44 (2006).
    CAS PubMed Google Scholar
  15. Elowitz, M. Stochastic control of gene expression. Annu. Rev. Microbiol. (in the press).
  16. Davey, H. M. & Kell, D. B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60, 641?696 (1996).
    CAS PubMed Central PubMed Google Scholar
  17. Avery, S. V., Malkapuram, S., Mateus, C. & Babb, K. S. Cu/Zn superoxide dismutase is required for oxytetracycline resistance of Saccharomyces cerevisiae. J. Bacteriol. 182, 76?80 (2000).
    CAS PubMed Central PubMed Google Scholar
  18. Anderson, R. P. & Roth, J. R. Tandem genetic duplications in phage and bacteria. Annu. Rev. Microbiol. 31, 473?505 (1977).
    CAS PubMed Google Scholar
  19. Hallett, B. Playing Dr. Jekyll and Mr. Hyde: combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol. 4, 570?581 (2001).
    Google Scholar
  20. van der Woude, M. W. & Baumler, A. J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17, 581?611 (2004).
    CAS PubMed Central PubMed Google Scholar
  21. Pays, E. Regulation of antigen gene expression in Trypanosoma brucei. Trends Parasitol. 21, 517?520 (2005).
    CAS PubMed Google Scholar
  22. Al-Khedery, B. & Allred, D. R. Antigenic variation in Babesia bovis occurs through segmental gene conversion of the ves multigene family, within a bidirectional locus of active transcription. Mol. Microbiol. 59, 402?414 (2006).
    CAS PubMed Google Scholar
  23. Henderson, I. R., Owen, P. & Nataro, J. P. Molecular switches- the on and off of bacterial phase variation. Mol. Microbiol. 33, 919?932 (1999).
    CAS PubMed Google Scholar
  24. Hernday, A., Braaten, B. & Low, D. The intricate workings of a bacterial epigenetic switch. Adv. Exp. Med. Biol. 547, 83?89 (2004).
    CAS PubMed Google Scholar
  25. Hernday, A. D., Braaten, B. A., Broitman-Maduro, G., Engelberts, P. & Low, D. A. Regulation of the Pap epigenetic switch by CpxAR: phosphorylated CpxR inhibits transition to the phase on state by competition with Lrp. Mol. Cell 16, 537?547 (2004).
    CAS PubMed Google Scholar
  26. Hernday, A. D., Braaten, B. A. & Low, D. A. The mechanism by which DNA adenine methylase and papl activate the pap epigenetic switch. Mol. Cell 12, 947?957 (2003).
    CAS PubMed Google Scholar
  27. Horn, D. & Barry, J. D. The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chrom. Res. 13, 525?533 (2005).
    CAS PubMed Google Scholar
  28. Ralph, S. A. & Scherf, A. The epigenetic control of antigenic variation in Plasmodium falciparum. Curr. Opin. Microbiol. 8, 434?440 (2005). Review that provides a recent model for the epigenetically regulated expression of different var loci in the malaria parasite.
    CAS PubMed Google Scholar
  29. Voss, T. S. et al. A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439, 1004?1008 (2006).
    CAS PubMed Google Scholar
  30. Halme, A., Bumgarner, S., Styles, C. & Fink, G. R. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116, 405?415 (2004). Demonstrates that the switch in FLO gene expression, which determines variability in pseudohyphal growth or adhesion of S. cerevisiae cells, involves histone-deacetylase-mediated epigenetic regulation.
    CAS PubMed Google Scholar
  31. Verstrepen, K. J. & Klis, F. M. Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol. 60, 5?15 (2006).
    CAS PubMed Google Scholar
  32. Slutsky, B., Buffo, J. & Soll, D. R. High-frequency switching of colony morphology in Candida albicans. Science 230, 666?669 (1985).
    CAS PubMed Google Scholar
  33. Slutsky, B. et al. White-opaque transition? a 2nd high-frequency switching system in Candida albicans. J. Bacteriol. 169, 189?197 (1987).
    CAS PubMed Central PubMed Google Scholar
  34. Brockert, P. J. et al. Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect. Immun. 71, 7109?7118 (2003).
    CAS PubMed Central PubMed Google Scholar
  35. Srikantha, T., Zhao, R., Daniels, K., Radke, J. & Soll, D. R. Phenotypic switching in Candida glabrata accompanied by changes in expression of genes with deduced functions in copper detoxification and stress. Euk. Cell 4, 1434?1445 (2005).
    CAS Google Scholar
  36. Soll, D. R. Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays 26, 10?20 (2004).
    CAS PubMed Google Scholar
  37. Whiteway, M. & Nantel, A. in The Mycota XIII. Fungal Genomics (ed. Brown, A. J. P.) 149?159 (Springer, Berlin Heidelberg, 2006).
    Google Scholar
  38. Odds, F. C. Switch of phenotype as an escape mechanism of the intruder. Mycoses 40, 9?12 (1997).
    PubMed Google Scholar
  39. Lockhart, S. R. et al. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162, 737?745 (2002).
    CAS PubMed Central PubMed Google Scholar
  40. Miller, M. G. & Johnson, A. D. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293?302 (2002).
    CAS PubMed Google Scholar
  41. Tsong, A. E., Miller, M. G., Raisner, R. M. & Johnson, A. D. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115, 389?399 (2003).
    CAS PubMed Google Scholar
  42. Wu, W., Pujol, C., Lockhart, S. R. & Soll, D. R. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics 169, 1311?1327 (2005).
    CAS PubMed Central PubMed Google Scholar
  43. Klar, A. J. S., Srikantha, T. & Soll, D. R. A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 158, 919?924 (2001).
    CAS PubMed Central PubMed Google Scholar
  44. Srikantha, T., Tsai, L., Daniels, K., Klar, A. J. S. & Soll, D. R. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J. Bacteriol. 183, 4614?4625 (2001). Establishes a link between histone deacetylation and the frequency of switches between colony morphologies in the pathogen C. albicans.
    CAS PubMed Central PubMed Google Scholar
  45. Perez-Martin, J., Uria, J. A. & Johnson, A. D. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J. 18, 2580?2592 (1999).
    CAS PubMed Central PubMed Google Scholar
  46. Moyed, H. S. & Bertrand, K. P. HIPA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768?775 (1983).
    CAS PubMed Central PubMed Google Scholar
  47. Wolfson, J. S., Hooper, D. C., McHugh, G. L., Bozza, M. A. & Swartz, M. N. Mutants of Escherichia-coli K-12 exhibiting reduced killing by both quinolone and β-lactam antimicrobial agents. Antimicrob. Agents Chemother. 34, 1938?1943 (1990).
    CAS PubMed Central PubMed Google Scholar
  48. Harrison, J. J., Turner, R. J. & Ceri, H. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ. Microbiol. 7, 981?994 (2005).
    CAS PubMed Google Scholar
  49. Wiuff, C. et al. Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob. Agents Chemother. 49, 1483?1494 (2005).
    CAS PubMed Central PubMed Google Scholar
  50. Spoering, A. L. & Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746?6751 (2001).
    CAS PubMed Central PubMed Google Scholar
  51. Lewis, K. Persister cells and the riddle of biofilm survival. Biochem. (Mosc.) 70, 267?274 (2005).
    CAS Google Scholar
  52. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622?1625 (2004).
    CAS PubMed Google Scholar
  53. Rinder, H. Hetero-resistance: an under-recognised confounder in diagnosis and therapy? J. Med. Microbiol. 50, 1018?1020 (2001).
    CAS Google Scholar
  54. Knobloch, J. K. M., Jager, S., Huck, J., Horstkotte, M. A. & Mack, D. mecA is not involved in the σB-dependent switch of the expression phenotype of methicillin resistance in Staphylococcus epidermidis. Antimicrob. Agents Chemother. 49, 1216?1219 (2005).
    CAS PubMed Central PubMed Google Scholar
  55. Marr, K. A., Lyons, C. N., Rustad, T., Bowden, R. A. & White, T. C. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob. Agents Chemother. 42, 2584?2589 (1998).
    CAS PubMed Central PubMed Google Scholar
  56. Mondon, P. et al. Heteroresistance to fluconazole and voriconazole in Cryptococcus neoformans. Antimicrob. Agents Chemother. 43, 1856?1861 (1999).
    CAS PubMed Central PubMed Google Scholar
  57. Cowen, L. E. & Lindquist, S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185?2189 (2005).
    CAS PubMed Google Scholar
  58. Lewis, K. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64, 503?514 (2000).
    CAS PubMed Central PubMed Google Scholar
  59. Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13?18 (2004).
    CAS PubMed Google Scholar
  60. Sufya, N., Allison, D. G. & Gilbert, P. Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials. J. Appl. Microbiol. 95, 1261?1267 (2003).
    CAS PubMed Google Scholar
  61. Kussell, E., Kishony, R., Balaban, N. Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807?1814 (2005).
    PubMed Central PubMed Google Scholar
  62. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172?8180 (2004). Provides evidence indicating that variability in the activity of cellular functions that are normally corrupted by antibiotics could give rise to occasional persister cells, which might ensure survival of the population.
    CAS PubMed Central PubMed Google Scholar
  63. Korch, S. B., Henderson, T. A. & Hill, T. M. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol. 50, 1199?1213 (2003).
    CAS PubMed Google Scholar
  64. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730?1737 (1999).
    CAS PubMed Central PubMed Google Scholar
  65. Steels, H., James, S. A., Roberts, I. N. & Stratford, M. Sorbic acid resistance: the inoculum effect. Yeast 16, 1173?1183 (2000).
    CAS PubMed Google Scholar
  66. Attfield, P. V., Choi, H. Y., Veal, D. A. & Bell, P. J. L. Heterogeneity of stress gene expression and stress resistance among individual cells of Saccharomyces cerevisiae. Mol. Microbiol. 40, 1000?1008 (2001).
    CAS PubMed Google Scholar
  67. Eaglestone, S. S., Cox, B. S. & Tuite, M. F. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18, 1974?1981 (1999).
    CAS PubMed Central PubMed Google Scholar
  68. True, H. L., Berlin, I. & Lindquist, S. L. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431, 184?187 (2004).
    CAS PubMed Google Scholar
  69. Chernoff, Y. O. et al. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35, 865?876 (2000).
    CAS PubMed Google Scholar
  70. Aertsen, A. & Michiels, C. W. Diversify or die: generation of diversity in response to stress. Crit. Rev. Microbiol. 31, 69?78 (2005).
    PubMed Google Scholar
  71. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336?342 (1998).
    CAS PubMed Google Scholar
  72. Bergman, A. & Siegal, M. L. Evolutionary capacitance as a general feature of complex gene networks. Nature 424, 549?552 (2003).
    CAS PubMed Google Scholar
  73. Holmstrom, K., Tolker-Nielsen, T. & Molin, S. Physiological states of individual Salmonella typhimurium cells monitored by in situ reverse transcription PCR. J. Bacteriol. 181, 1733?1738 (1999).
    CAS PubMed Central PubMed Google Scholar
  74. Plesset, J., Ludwig, J. R., Cox, B. S. & McLaughlin, C. S. Effect of cell-cycle position on thermotolerance in Saccharomyces cerevisiae. J. Bacteriol. 169, 779?784 (1987).
    CAS PubMed Central PubMed Google Scholar
  75. Jacquet, M., Renault, G., Lallet, S., De Mey, J. & Goldbeter, A. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J. Cell Biol. 161, 497?505 (2003).
    CAS PubMed Google Scholar
  76. Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310, 1152?1158 (2005).
    CAS PubMed Google Scholar
  77. McCool, J. D. et al. Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol. Microbiol. 53, 1343?1357 (2004).
    CAS PubMed Google Scholar
  78. Kale, S. P. & Jazwinski, S. M. Differential response to UV stress and DNA damage during the yeast replicative life span. Dev. Genet. 18, 154?160 (1996).
    CAS PubMed Google Scholar
  79. Klevecz, R. R., Bolen, J., Forrest, G. & Murray, D. B. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc. Natl Acad. Sci. USA 101, 1200?1205 (2004).
    CAS PubMed PubMed Central Google Scholar
  80. Wang, J. Q. et al. Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 189, 9?13 (2000).
    CAS PubMed Google Scholar
  81. Tonozuka, H. et al. Analysis of the upstream regulatory region of the GTS1 gene required for its oscillatory expression. J. Biochem. 130, 589?595 (2001).
    CAS PubMed Google Scholar
  82. Murray, D. B., Engelen, F., Lloyd, D. & Kuriyama, H. Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae. Microbiology 145, 2739?2745 (1999).
    CAS PubMed Google Scholar
  83. Flattery-O'Brien, J. A. & Dawes, I. W. Hydrogen peroxide causes _RAD9_-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J. Biol. Chem. 273, 8561?8571 (1998).
    Google Scholar
  84. Leroy, C., Mann, C. & Marsolier, M. C. Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions. EMBO J. 20, 2896?2906 (2001).
    CAS PubMed Central PubMed Google Scholar
  85. Desnues, B. et al. Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep. 4, 400?404 (2003).
    CAS PubMed Central PubMed Google Scholar
  86. Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751?1753 (2003). Shows that oxidatively damaged proteins are preferentially retained in yeast mother cells during division, so creating cell-to-cell heterogeneity in oxidative burden.
    CAS PubMed Google Scholar
  87. Drakulic, T. et al. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5, 1215?1228 (2005).
    CAS PubMed Google Scholar
  88. Avery, S. V., Harwood, J. L. & Lloyd, D. Quantification and characterization of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow-cytometry. Appl. Environ. Microbiol. 61, 1124?1132 (1995).
    CAS PubMed Central PubMed Google Scholar
  89. Howlett, N. G. & Avery, S. V. Flow cytometric investigation of heterogeneous copper sensitivity in asynchronously-grown Saccharomyces cerevisiae. FEMS Microbiol. Lett. 176, 379?386 (1999).
    CAS PubMed Google Scholar
  90. Touati, D. Investigating phenotypes resulting from a lack of superoxide dismutase in bacterial null mutants. Methods Enzymol. 349, 145?154 (2002).
    CAS PubMed Google Scholar
  91. Wallace, M. A., Bailey, S., Fukuto, J. M., Valentine, J. S. & Gralla, E. B. Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds. Chem. Res. Toxicol. 18, 1279?1286 (2005).
    CAS PubMed Google Scholar
  92. Sumner, E. R. et al. Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151, 1939?1948 (2005).
    CAS PubMed Google Scholar
  93. Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nature Rev. Mol. Cell Biol. 5, 1024?1037 (2004).
    CAS Google Scholar
  94. Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911?914 (1999).
    CAS PubMed Google Scholar
  95. Korobkova, E., Emonet, T., Vilar, J. M. G., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574?578 (2004). Identifies components of the chemotaxis signalling pathway that produce variability in motility behaviour among E. coli cells.
    CAS PubMed Google Scholar
  96. Shi, W. Y. & Zusman, D. R. Fatal attraction. Nature 366, 414?415 (1993).
    CAS PubMed Google Scholar
  97. Spudich, J. L. & Koshland, D. E. Non-genetic individuality: chance in single cell. Nature 262, 467?471 (1976).
    CAS PubMed Google Scholar
  98. Levin, M. D., Morton-Firth, C. J., Abouhamad, W. N., Bourret, R. B. & Bray, D. Origins of individual swimming behavior in bacteria. Biophys. J. 74, 175?181 (1998).
    CAS PubMed Central PubMed Google Scholar
  99. Levin, M. D. Noise in gene expression as the source of non-genetic individuality in the chemotactic response of Escherichia coli. FEBS Lett. 550, 135?138 (2003).
    CAS PubMed Google Scholar
  100. Cluzel, P., Surette, M. & Leibler, S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 1652?1655 (2000).
    CAS PubMed Google Scholar
  101. Sagi, Y., Khan, S. & Eisenbach, M. Binding of the chemotaxis response regulator CheY to the isolated, intact switch complex of the bacterial flagellar motor: lack of cooperativity. J. Biol. Chem. 278, 25867?25871 (2003).
    CAS PubMed Google Scholar
  102. Barak, R. & Eisenbach, M. Co-regulation of acetylation and phosphorylation of CheY, a response regulator in chemotaxis of Escherichia coli. J. Mol. Biol. 342, 375?381 (2004).
    CAS PubMed Google Scholar
  103. Kollmann, M., Lovdok, L., Bartholome, K., Timmer, J. & Sourjik, V. Design principles of a bacterial signalling network. Nature 438, 504?507 (2005).
    CAS PubMed Google Scholar
  104. Kearns, D. B. & Losick, R. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 19, 3083?3094 (2005). Characterizes part of the regulatory mechanism that determines whether individual cells of B. subtilis adopt a motile or sessile type.
    CAS PubMed Central PubMed Google Scholar
  105. Siegele, D. A. & Hu, J. C. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc. Natl Acad. Sci. USA 94, 8168?8172 (1997).
    CAS PubMed PubMed Central Google Scholar
  106. Tolker-Nielsen, T., Holmstrom, K., Boe, L. & Molin, S. Non-genetic population heterogeneity studied by in situ polymerase chain reaction. Mol. Microbiol. 27, 1099?1105 (1998).
    CAS PubMed Google Scholar
  107. Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528?2535 (2001).
    CAS PubMed Central PubMed Google Scholar
  108. Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140?148 (2002).
    CAS PubMed Google Scholar
  109. Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714?7719 (2003).
    CAS PubMed PubMed Central Google Scholar
  110. Smits, W. K., Kuipers, O. P. & Veening, J.-W. Phenotypic variation in bacteria: the role of feedback regulation. Nature Rev. Microbiol. 4, 259?271 (2006).
    CAS Google Scholar
  111. Blake, W. J., Kaern, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633?637 (2003).
    CAS PubMed Google Scholar
  112. Dodd, I. B., Shearwin, K. E. & Egan, J. B. Revisited gene regulation in bacteriophage λ. Curr. Opin. Genet. Dev. 15, 145?152 (2005).
    CAS PubMed Google Scholar
  113. Folkmanis, A., Maltzman, W., Mellon, P., Skalka, A. & Echols H. The essential role of the cro gene in lytic development by bacteriophage λ. Virology 81, 352?362 (1977).
    CAS PubMed Google Scholar
  114. Banuett, F., Hoyt, M. A., McFarlane, L., Echols, H. & Herskowitz, I. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage λ cII protein. J. Mol. Biol. 187, 213?224 (1986).
    CAS PubMed Google Scholar
  115. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633?1648 (1998).
    CAS PubMed Central PubMed Google Scholar
  116. Baek, K., Svenningsen, S., Eisen, H., Sneppen, K. & Brown, S. Single-cell analysis of λ immunity regulation. J. Mol. Biol. 334, 363?372 (2003).
    CAS PubMed Google Scholar
  117. Maamar, H. & Dubnau, D. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56, 615?624 (2005).
    CAS PubMed Google Scholar
  118. Smits, W. K. et al. Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol. Microbiol. 56, 604?614 (2005). References 117 and 118 show that autostimulation of the ComK transcription factor is required for bistability of competence development in B. subtilis.
    CAS PubMed Google Scholar
  119. Avery, S. V. Cell individuality: the bistability of competence development. Trends Microbiol. 13, 459?462 (2005).
    CAS PubMed Google Scholar
  120. Veening, J. W., Hamoen, L. W. & Kuipers, O. P. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol. 56, 1481?1494 (2005).
    CAS PubMed Google Scholar
  121. Gonzalez-Pastor, J. E., Hobbs, E. C. & Losick, R. Cannibalism by sporulating bacteria. Science 301, 510?513 (2003).
    CAS PubMed Google Scholar
  122. Maughan, H. & Nicholson, W. L. Stochastic processes influence stationary-phase decisions in Bacillus subtilis. J. Bacteriol. 186, 2212?2214 (2004).
    CAS PubMed Central PubMed Google Scholar
  123. Fujita, M. & Losick, R. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev. 19, 2236?2244 (2005).
    CAS PubMed Central PubMed Google Scholar
  124. Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M., Elowitz, M. B. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545?550 (2006).
    PubMed Google Scholar
  125. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962?1965 (2005).
    CAS PubMed Google Scholar
  126. Bean, J. M., Siggia, E. D. & Cross, F. R. Coherence and timing of cell cycle start examined at single-cell resolution. Mol. Cell 21, 3?14 (2006).
    CAS PubMed Google Scholar
  127. Cai, L. Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358?362 (2006).
    CAS PubMed Google Scholar
  128. Yu, J., Xiao, J., Ren, X. J., Lao, K. Q. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600?1603 (2006).
    CAS PubMed Google Scholar
  129. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69?73 (2002).
    CAS PubMed Google Scholar
  130. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025?1036 (2005).
    CAS PubMed Google Scholar
  131. Volfson, D. et al. Origins of extrinsic variability in eukaryotic gene expression. Nature 439, 861?864 (2006).
    CAS PubMed Google Scholar

Download references