Schlondorff, D. O. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int.74, 860–866 (2008). ArticleCASPubMed Google Scholar
Chevalier, R. L. Obstructive nephropathy: towards biomarker discovery and gene therapy. Nat. Clin. Pract. Nephrol.2, 157–168 (2006). ArticleCASPubMed Google Scholar
Kaissling, B. & Le Hir, M. The renal cortical interstitium: morphological and functional aspects. Histochem. Cell Biol.130, 247–262 (2008). ArticleCASPubMedPubMed Central Google Scholar
Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol.19, 12–23 (2008). ArticleCASPubMed Google Scholar
Docherty, N. G., O'Sullivan, O. E., Healy, D. A., Fitzpatrick, J. M. & Watson, R. W. Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am. J. Physiol. Renal Physiol.290, F4–F13 (2006). ArticleCASPubMed Google Scholar
Kurts, C., Heymann, F., Lukacs-Kornek, V., Boor, P. & Floege, J. Role of T cells and dendritic cells in glomerular immunopathology. Semin. Immunopathol.29, 317–335 (2007). ArticleCASPubMed Google Scholar
Sung, S. S. & Bolton, W. K. T cells and dendritic cells in glomerular disease: the new glomerulotubular feedback loop. Kidney Int.77, 393–399 (2010). ArticlePubMed Google Scholar
Holdsworth, S. R. & Summers, S. A. Role of mast cells in progressive renal diseases. J. Am. Soc. Nephrol.19, 2254–2261 (2008). ArticleCASPubMed Google Scholar
Liu, Y. New insights into epithelial–mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol.21, 212–222 (2010). ArticleCASPubMed Google Scholar
Boor, P., Sebeková, K., Ostendorf, T. & Floege, J. Treatment targets in renal fibrosis. Nephrol. Dial. Transplant.22, 3391–3407 (2007). ArticleCASPubMed Google Scholar
Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA99, 12877–12882 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sorrell, J. M. & Caplan, A. I. Fibroblasts—a diverse population at the center of it all. Int. Rev. Cell Mol. Biol.276, 161–214 (2009). ArticleCASPubMed Google Scholar
Hinz, B. The myofibroblast: paradigm for a mechanically active cell. J. Biomech.43, 146–155 (2010). ArticlePubMed Google Scholar
Eyden, B. The myofibroblast: an assessment of controversial issues and a definition useful in diagnosis and research. Ultrastruct. Pathol.25, 39–50 (2001). ArticleCASPubMed Google Scholar
Ru, Y., Eyden, B., Curry, A., McWilliam, L. J. & Coyne, J. D. Actin filaments in human renal tubulo-interstitial fibrosis: significance for the concept of epithelial–myofibroblast transformation. J. Submicrosc. Cytol. Pathol.35, 221–233 (2003). CASPubMed Google Scholar
Muchaneta-Kubara, E. C. & el Nahas, A. M. Myofibroblast phenotypes expression in experimental renal scarring. Nephrol. Dial. Transplant.12, 904–915 (1997). ArticleCASPubMed Google Scholar
Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol.173, 1617–1627 (2008). ArticleCASPubMedPubMed Central Google Scholar
Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol.176, 85–97 (2010). ArticleCASPubMedPubMed Central Google Scholar
Picard, N., Baum, O., Vogetseder, A., Kaissling, B. & Le Hir, M. Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem. Cell Biol.130, 141–155 (2008). ArticleCASPubMedPubMed Central Google Scholar
Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell3, 301–313 (2008). ArticleCASPubMed Google Scholar
Sommer, M. et al. Abnormal growth and clonal proliferation of fibroblasts in an animal model of unilateral ureteral obstruction. Nephron82, 39–50 (1999). ArticleCASPubMed Google Scholar
Kilarski, W. W., Samolov, B., Petersson, L., Kvanta, A. & Gerwins, P. Biomechanical regulation of blood vessel growth during tissue vascularization. Nat. Med.15, 657–664 (2009). ArticleCASPubMed Google Scholar
Rohatgi, R. & Flores, D. Intratubular hydrodynamic forces influence tubulointerstitial fibrosis in the kidney. Curr. Opin. Nephrol. Hypertens.19, 65–71 (2010). ArticlePubMedPubMed Central Google Scholar
Li, L. et al. Aberrant planar cell polarity induced by urinary tract obstruction. Am. J. Physiol. Renal Physiol.297, F1526–F1533 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fujigaki, Y. et al. Transient myofibroblast differentiation of interstitial fibroblastic cells relevant to tubular dilatation in uranyl acetate-induced acute renal failure in rats. Virchows Arch.446, 164–176 (2005). ArticleCASPubMed Google Scholar
Takeji, M. et al. Smooth muscle alpha-actin deficiency in myofibroblasts leads to enhanced renal tissue fibrosis. J. Biol. Chem.281, 40193–40200 (2006). ArticleCASPubMed Google Scholar
Taneda, S. et al. Obstructive uropathy in mice and humans: potential role for PDGF-D in the progression of tubulointerstitial injury. J. Am. Soc. Nephrol.14, 2544–2555 (2003). ArticleCASPubMed Google Scholar
Boor, P. et al. PDGF-D inhibition by CR002 ameliorates tubulointerstitial fibrosis following experimental glomerulonephritis. Nephrol. Dial. Transplant.22, 1323–1331 (2007). ArticleCASPubMed Google Scholar
Ostendorf, T. et al. Antagonism of PDGF-D by human antibody CR002 prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol.17, 1054–1062 (2006). ArticleCASPubMed Google Scholar
Kliem, V. et al. Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney Int.49, 666–678 (1996). ArticleCASPubMed Google Scholar
Alpers, C. E., Seifert, R. A., Hudkins, K. L., Johnson, R. J. & Bowen-Pope, D. F. PDGF-receptor localizes to mesangial, parietal epithelial, and interstitial cells in human and primate kidneys. Kidney Int.43, 286–294 (1993). ArticleCASPubMed Google Scholar
Hawthorne, T. et al. A phase I study of CR002, a fully-human monoclonal antibody against platelet-derived growth factor-D. Int. J. Clin. Pharmacol. Ther.46, 236–244 (2008). ArticleCASPubMed Google Scholar
Floege, J. et al. Localization of PDGF alpha-receptor in the developing and mature human kidney. Kidney Int.51, 1140–1150 (1997). ArticleCASPubMed Google Scholar
Floege, J., Hudkins, K. L., Davis, C. L., Schwartz, S. M. & Alpers, C. E. Expression of PDGF alpha-receptor in renal arteriosclerosis and rejecting renal transplants. J. Am. Soc. Nephrol.9, 211–223 (1998). CASPubMed Google Scholar
Eitner, F. et al. PDGF-C expression in the developing and normal adult human kidney and in glomerular diseases. J. Am. Soc. Nephrol.14, 1145–1153 (2003). ArticleCASPubMed Google Scholar
Eitner, F. et al. Expression of a novel PDGF isoform, PDGF-C, in normal and diseased rat kidney. J. Am. Soc. Nephrol.13, 910–917 (2002). CASPubMed Google Scholar
Eitner, F. et al. PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J. Am. Soc. Nephrol.19, 281–289 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ding, H. et al. A specific requirement for PDGF-C in palate formation and PDGFR-alpha signaling. Nat. Genet.36, 1111–1116 (2004). ArticleCASPubMed Google Scholar
Huang, X. R., Chung, A. C., Wang, X. J., Lai, K. N. & Lan, H. Y. Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease. Am. J. Physiol. Renal Physiol.295, F118–F127 (2008). ArticleCASPubMedPubMed Central Google Scholar
Huang, X. R., Chung, A. C., Zhou, L., Wang, X. J. & Lan, H. Y. Latent TGF-beta1 protects against crescentic glomerulonephritis. J. Am. Soc. Nephrol.19, 233–242 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zeisberg, M. Bone morphogenic protein-7 and the kidney: current concepts and open questions. Nephrol. Dial. Transplant.21, 568–573 (2006). ArticleCASPubMed Google Scholar
Zeisberg, M. et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal Physiol.285, F1060–F1067 (2003). ArticleCASPubMed Google Scholar
Zeisberg, M. et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med.9, 964–968 (2003). ArticleCASPubMed Google Scholar
Zeisberg, M., Shah, A. A. & Kalluri, R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J. Biol. Chem.280, 8094–8100 (2005). ArticleCASPubMed Google Scholar
Yanagita, M. Modulator of bone morphogenetic protein activity in the progression of kidney diseases. Kidney Int.70, 989–993 (2006). ArticleCASPubMed Google Scholar
Tanaka, M. et al. Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome. J. Clin. Invest.120, 768–777 (2010). ArticleCASPubMedPubMed Central Google Scholar
Grgic, I. et al. Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc. Natl Acad. Sci. USA106, 14518–14523 (2009). ArticlePubMedPubMed Central Google Scholar
Kato, M. et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl Acad. Sci. USA104, 3432–3437 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wang, Q. et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J.22, 4126–4135 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rastaldi, M. P. et al. Epithelial–mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int.62, 137–146 (2002). ArticlePubMed Google Scholar
Liu, Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol.15, 1–12 (2004). ArticleCASPubMed Google Scholar
Li, L., Zepeda-Orozco, D., Black, R. & Lin, F. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am. J. Pathol.176, 1767–1778 (2010). ArticleCASPubMedPubMed Central Google Scholar
Docherty, N. G. et al. Increased E-cadherin expression in the ligated kidney following unilateral ureteric obstruction. Kidney Int.75, 205–213 (2009). ArticleCASPubMed Google Scholar
Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell2, 284–291 (2008). ArticleCASPubMed Google Scholar
Faulkner, J. L., Szcykalski, L. M., Springer, F. & Barnes, J. L. Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. Am. J. Pathol.167, 1193–1205 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sheerin, N. S. & Sacks, S. H. Leaked protein and interstitial damage in the kidney: is complement the missing link? Clin. Exp. Immunol.130, 1–3 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rangan, G. K., Pippin, J. W., Coombes, J. D. & Couser, W. G. C5b-9 does not mediate chronic tubulointerstitial disease in the absence of proteinuria. Kidney Int.67, 492–503 (2005). ArticleCASPubMed Google Scholar
Rangan, G. K., Pippin, J. W. & Couser, W. G. C5b-9 regulates peritubular myofibroblast accumulation in experimental focal segmental glomerulosclerosis. Kidney Int.66, 1838–1848 (2004). ArticleCASPubMed Google Scholar
Boor, P. et al. Complement C5 mediates experimental tubulointerstitial fibrosis. J. Am. Soc. Nephrol.18, 1508–1515 (2007). ArticleCASPubMed Google Scholar
Pan, H. et al. Anaphylatoxin C5a contributes to the pathogenesis of cisplatin-induced nephrotoxicity. Am. J. Physiol. Renal Physiol.296, F496–F504 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest.120, 1084–1096 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest.120, 1043–1055 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cybulsky, A. V. Endoplasmic reticulum stress in proteinuric kidney disease. Kidney Int.77, 187–193 (2010). ArticleCASPubMed Google Scholar
Inagi, R. Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Nephron Exp. Nephrol.112, e1–e9 (2009). ArticlePubMed Google Scholar
Periyasamy-Thandavan, S., Jiang, M., Schoenlein, P. & Dong, Z. Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am. J. Physiol. Renal Physiol.297, F244–F256 (2009). ArticleCASPubMedPubMed Central Google Scholar
Periyasamy-Thandavan, S. et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int.74, 631–640 (2008). ArticleCASPubMed Google Scholar
Pallet, N. et al. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy4, 783–791 (2008). ArticleCASPubMed Google Scholar
Gozuacik, D. et al. DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ.15, 1875–1886 (2008). ArticleCASPubMed Google Scholar
Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med.16, 535–543 (2010). ArticleCASPubMedPubMed Central Google Scholar
Menke, J. et al. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J. Clin. Invest.119, 2330–2342 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ruan, X. Z., Varghese, Z. & Moorhead, J. F. An update on the lipid nephrotoxicity hypothesis. Nat. Rev. Nephrol.5, 713–721 (2009). ArticleCASPubMed Google Scholar
Cho, K. H., Kim, H. J., Kamanna, V. S. & Vaziri, N. D. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. Biochim. Biophys. Acta1800, 6–15 (2010). ArticleCASPubMed Google Scholar
Cho, K. H., Kim, H. J., Rodriguez-Iturbe, B. & Vaziri, N. D. Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure. Am. J. Physiol. Renal Physiol.297, F106–F113 (2009). ArticleCASPubMed Google Scholar
Kim, H. J., Moradi, H., Yuan, J., Norris, K. & Vaziri, N. D. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am. J. Physiol. Renal Physiol.296, F1297–F1306 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wu, J. et al. Peroxisome proliferator-activated receptors and renal diseases. Front. Biosci.14, 995–1009 (2009). ArticleCAS Google Scholar
Toblli, J. E. et al. Antifibrotic effects of pioglitazone on the kidney in a rat model of type 2 diabetes mellitus. Nephrol. Dial. Transplant.24, 2384–2391 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kawai, T. et al. PPAR-gamma agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-beta. Lab. Invest.89, 47–58 (2009). ArticleCASPubMed Google Scholar
Higgins, D. F., Kimura, K., Iwano, M. & Haase, V. H. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle7, 1128–1132 (2008). ArticleCASPubMed Google Scholar
Kimura, K. et al. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am. J. Physiol. Renal Physiol.295, F1023–F1029 (2008). ArticleCASPubMedPubMed Central Google Scholar
Higgins, D. F. et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest.117, 3810–3820 (2007). CASPubMedPubMed Central Google Scholar
Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol.19, 2282–2287 (2008). ArticlePubMedPubMed Central Google Scholar
Li, J., Qu, X. & Bertram, J. F. Endothelial–myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am. J. Pathol.175, 1380–1388 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wilkinson, L. et al. Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice. Kidney Int.76, 1161–1171 (2009). ArticlePubMed Google Scholar
Hakroush, S. et al. Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. Am. J. Pathol.175, 1883–1895 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sakai, N. et al. Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc. Natl Acad. Sci. USA103, 14098–14103 (2006). ArticleCASPubMedPubMed Central Google Scholar
Niedermeier, M. et al. CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc. Natl Acad. Sci. USA106, 17892–17897 (2009). ArticlePubMedPubMed Central Google Scholar
Sakai, N. et al. Fibrocytes are involved in the pathogenesis of human chronic kidney disease. Hum. Pathol.41, 672–678 (2010). ArticleCASPubMed Google Scholar
Pilling, D., Fan, T., Huang, D., Kaul, B. & Gomer, R. H. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE4, e7475 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shao, D. D., Suresh, R., Vakil, V., Gomer, R. H. & Pilling, D. Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J. Leukoc. Biol.83, 1323–1333 (2008). ArticleCASPubMed Google Scholar
Lin, S. L., Castaño, A. P., Nowlin, B. T., Lupher, M. L. Jr & Duffield, J. S. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol.183, 6733–6743 (2009). ArticleCASPubMed Google Scholar
Roufosse, C. et al. Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis. J. Am. Soc. Nephrol.17, 775–782 (2006). ArticleCASPubMed Google Scholar
Broekema, M. et al. Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J. Am. Soc. Nephrol.18, 165–175 (2007). ArticleCASPubMed Google Scholar
Henderson, N. C. et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol.172, 288–298 (2008). ArticleCASPubMedPubMed Central Google Scholar
Henderson, N. C. & Sethi, T. The regulation of inflammation by galectin-3. Immunol. Rev.230, 160–171 (2009). ArticleCASPubMed Google Scholar
Ma, F. Y., Liu, J., Kitching, A. R., Manthey, C. L. & Nikolic-Paterson, D. J. Targeting renal macrophage accumulation via c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney. Am. J. Physiol. Renal Physiol.296, F177–F185 (2009). ArticleCASPubMed Google Scholar
Nishida, M. & Hamaoka, K. Macrophage phenotype and renal fibrosis in obstructive nephropathy. Nephron Exp. Nephrol.110, e31–e36 (2008). ArticlePubMed Google Scholar
Nishida, M. et al. Adoptive transfer of macrophages ameliorates renal fibrosis in mice. Biochem. Biophys. Res. Commun.332, 11–16 (2005). ArticleCASPubMed Google Scholar
Krüger, T. et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J. Am. Soc. Nephrol.15, 613–621 (2004). ArticlePubMed Google Scholar
Macconi, D. et al. Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides. J. Am. Soc. Nephrol.20, 123–130 (2009). ArticleCASPubMedPubMed Central Google Scholar
Heymann, F. et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J. Clin. Invest.119, 1286–1297 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sakamoto, I. et al. Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int.75, 828–838 (2009). ArticleCASPubMed Google Scholar
Matsui, K. et al. Lymphatic microvessels in the rat remnant kidney model of renal fibrosis: aminopeptidase p and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J. Am. Soc. Nephrol.14, 1981–1989 (2003). ArticleCASPubMed Google Scholar
Kriz, W. & LeHir, M. Pathways to nephron loss starting from glomerular diseases—insights from animal models. Kidney Int.67, 404–419 (2005). ArticlePubMed Google Scholar
Zhang, T. et al. Disturbance of lymph circulation develops renal fibrosis in rats with or without contralateral nephrectomy. Nephrology (Carlton)13, 128–138 (2008). ArticleCAS Google Scholar
Zhang, T. et al. Functional, histological and biochemical consequences of renal lymph disorder in mononephrectomized rats. J. Nephrol.22, 109–116 (2009). CASPubMed Google Scholar
Kerjaschki, D. et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J. Am. Soc. Nephrol.15, 603–612 (2004). ArticleCASPubMed Google Scholar
Stuht, S. et al. Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am. J. Transplant.7, 377–384 (2007). ArticleCASPubMed Google Scholar
El-Koraie, A. F., Baddour, N. M., Adam, A. G., El Kashef, E. H. & El Nahas, A. M. Role of stem cell factor and mast cells in the progression of chronic glomerulonephritides. Kidney Int.60, 167–172 (2001). ArticleCASPubMed Google Scholar
Kondo, S. et al. Role of mast cell tryptase in renal interstitial fibrosis. J. Am. Soc. Nephrol.12, 1668–1676 (2001). CASPubMed Google Scholar
Timoshanko, J. R., Kitching, R., Semple, T. J., Tipping, P. G. & Holdsworth, S. R. A pathogenetic role for mast cells in experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol.17, 150–159 (2006). ArticleCASPubMed Google Scholar
Kanamaru, Y. et al. Mast cell-mediated remodeling and fibrinolytic activity protect against fatal glomerulonephritis. J. Immunol.176, 5607–5615 (2006). ArticleCASPubMed Google Scholar
Miyazawa, S. et al. Role of mast cells in the development of renal fibrosis: use of mast cell-deficient rats. Kidney Int.65, 2228–2237 (2004). ArticlePubMed Google Scholar
Hochegger, K. et al. Role of mast cells in experimental anti-glomerular basement membrane glomerulonephritis. Eur. J. Immunol.35, 3074–3082 (2005). ArticleCASPubMed Google Scholar
Kim, D. H. et al. Mast cells decrease renal fibrosis in unilateral ureteral obstruction. Kidney Int.75, 1031–1038 (2009). ArticleCASPubMed Google Scholar
Fan, Y. Y. et al. Contribution of chymase-dependent angiotensin II formation to the progression of tubulointerstitial fibrosis in obstructed kidneys in hamsters. J. Pharmacol. Sci.111, 82–90 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shweke, N. et al. Tissue transglutaminase contributes to interstitial renal fibrosis by favoring accumulation of fibrillar collagen through TGF-beta activation and cell infiltration. Am. J. Pathol.173, 631–642 (2008). ArticleCASPubMedPubMed Central Google Scholar
Huang, L. et al. Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int.76, 383–394 (2009). ArticleCASPubMed Google Scholar
Abrass, C. K., Hansen, K. M. & Patton, B. L. Laminin alpha4-null mutant mice develop chronic kidney disease with persistent overexpression of platelet-derived growth factor. Am. J. Pathol.176, 839–849 (2010). ArticleCASPubMedPubMed Central Google Scholar
Xie, P. et al. C/EBP-beta modulates transcription of tubulointerstitial nephritis antigen in obstructive uropathy. J. Am. Soc. Nephrol.20, 807–819 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ramachandra Rao, S. P. et al. Pirfenidone is renoprotective in diabetic kidney disease. J. Am. Soc. Nephrol.20, 1765–1775 (2009). ArticleCAS Google Scholar
Takakuta, K. et al. Renoprotective properties of pirfenidone in subtotally nephrectomized rats. Eur. J. Pharmacol.629, 118–124 (2010). ArticleCASPubMed Google Scholar
Cho, M. E. & Kopp, J. B. Pirfenidone: an anti-fibrotic therapy for progressive kidney disease. Expert Opin. Investig. Drugs19, 275–283 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cho, M. E., Smith, D. C., Branton, M. H., Penzak, S. R. & Kopp, J. B. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol.2, 906–913 (2007). ArticleCASPubMed Google Scholar
Little, M. H. & Bertram, J. F. Is there such a thing as a renal stem cell? J. Am. Soc. Nephrol.20, 2112–2117 (2009). ArticleCASPubMed Google Scholar
Hopkins, C., Li, J., Rae, F. & Little, M. H. Stem cell options for kidney disease. J. Pathol.217, 265–281 (2009). ArticleCASPubMed Google Scholar
Psihogios, N. G. et al. Evaluation of tubulointerstitial lesions' severity in patients with glomerulonephritides: an NMR-based metabonomic study. J. Proteome Res.6, 3760–3770 (2007). ArticleCASPubMed Google Scholar
Nickolas, T. L., Barasch, J. & Devarajan, P. Biomarkers in acute and chronic kidney disease. Curr. Opin. Nephrol. Hypertens.17, 127–132 (2008). ArticleCASPubMed Google Scholar
Tanaka, T. et al. Urinary L-type fatty acid-binding protein can reflect renal tubulointerstitial injury. Am. J. Pathol.174, 1203–1211 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, T. et al. Renal L-type fatty acid—binding protein in acute ischemic injury. J. Am. Soc. Nephrol.18, 2894–2902 (2007). ArticleCASPubMed Google Scholar
Negishi, K. et al. Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury. Kidney Int.73, 1374–1384 (2008). ArticleCASPubMed Google Scholar
Miranda, K. C. et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int.78, 191–199 (2010). ArticlePubMedPubMed Central Google Scholar
Hartono, C., Muthukumar, T. & Suthanthiran, M. Noninvasive diagnosis of acute rejection of renal allografts. Curr. Opin. Organ Transplant.15, 35–41 (2010). ArticlePubMedPubMed Central Google Scholar
Ghoul, B. E. et al. Urinary procollagen III aminoterminal propeptide (PIIINP): a fibrotest for the nephrologist. Clin. J. Am. Soc. Nephrol.5, 205–210 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ju, W. et al. Renal gene and protein expression signatures for prediction of kidney disease progression. Am. J. Pathol.174, 2073–2085 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol.26, 431–442 (2008). ArticleCASPubMed Google Scholar
Jones, L. K. et al. IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrol. Dial. Transplant.24, 3024–3032 (2009). ArticleCASPubMed Google Scholar
Zhang, G. et al. A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J. Biol. Chem.284, 29050–29064 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pang, M. et al. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am. J. Physiol. Renal Physiol.297, F996–F1005 (2009). ArticleCASPubMedPubMed Central Google Scholar
Noh, H. et al. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am. J. Physiol. Renal Physiol.297, F729–F739 (2009). ArticleCASPubMed Google Scholar
Grande, M. T. et al. Targeted genomic disruption of H-ras and N-ras has no effect on early renal changes after unilateral ureteral ligation. World J. Urol. doi:10.1007/s00345-009-0399-8.
Grande, M. T. et al. Deletion of H-Ras decreases renal fibrosis and myofibroblast activation following ureteral obstruction in mice. Kidney Int.77, 509–518 (2010). ArticleCASPubMed Google Scholar
Liao, T. D. et al. N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal injury and dysfunction in hypertensive rats with reduced renal mass: council for high blood pressure research. Hypertension55, 459–467 (2010). ArticleCASPubMed Google Scholar
Hewitson, T. D. et al. Endogenous relaxin is a naturally occurring modulator of experimental renal tubulointerstitial fibrosis. Endocrinology148, 660–669 (2007). ArticleCASPubMed Google Scholar
Teerlink, J. R. et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet373, 1429–1439 (2009). ArticleCASPubMed Google Scholar
Yuen, D. A. et al. Culture-modified bone marrow cells attenuate cardiac and renal injury in a chronic kidney disease rat model via a novel antifibrotic mechanism. PLoS ONE5, e9543 (2010). ArticleCASPubMedPubMed Central Google Scholar