- Ogden, C. L., Carroll, M. D. & Flegal, K. M. Prevalence of obesity in the United States. JAMA 312, 189–190 (2014).
Article CAS PubMed Google Scholar
- Kopelman, P. G. Obesity as a medical problem. Nature 404, 635–643 (2000).
Article CAS PubMed Google Scholar
- Arena, R. et al. Healthy lifestyle interventions to combat noncommunicable disease — a novel nonhierarchical connectivity model for key stakeholders: a policy statement from the American Heart Association, European Society of Cardiology, European Association for Cardiovascular Prevention and Rehabilitation, and American College of Preventive Medicine. Eur. Heart J. 36, 2097–2109 (2015).
Article PubMed Google Scholar
- Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Aron-Wisnewsky, J., Doré, J. & Clement, K. The importance of the gut microbiota after bariatric surgery. Nat. Rev. Gastroenterol. Hepatol. 9, 590–598 (2012).
Article PubMed Google Scholar
- Fouhy, F., Ross, R. P., Fitzgerald, G. F., Stanton, C. & Cotter, P. D. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 3, 203–220 (2012).
Article PubMed PubMed Central Google Scholar
- Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).
Article CAS PubMed Google Scholar
- Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).
Article CAS PubMed Google Scholar
- Parkhill, J. What has high-throughput sequencing ever done for us? Nat. Rev. Microbiol. 11, 664–665 (2013).
Article CAS PubMed Google Scholar
- Thomas, L. V. & Ockhuizen, T. New insights into the impact of the intestinal microbiota on health and disease: a symposium report. Br. J. Nutr. 107, S1–S13 (2012).
Article CAS PubMed Google Scholar
- Ji, B. & Nielsen, J. From next-generation sequencing to systematic modeling of the gut microbiome. Front. Genet. 6, 219 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Santiago, A. et al. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol. 14, 112 (2014).
Article PubMed PubMed Central Google Scholar
- Cardona, S. et al. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 12, 158 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Bromberg, J. S., Fricke, W. F., Brinkman, C. C., Simon, T. & Mongodin, E. F. Microbiota — implications for immunity and transplantation. Nat. Rev. Nephrol. 11, 342–353 (2015).
Article CAS PubMed Google Scholar
- Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
Article PubMed Google Scholar
- Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).
Article CAS PubMed Google Scholar
- Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut http://dx.doi.org/10.1136/gutjnl-2014-307913 (2014).
- Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 39, 424–429 (2015).
Article CAS Google Scholar
- Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).
Article CAS PubMed Google Scholar
- Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001).
Article CAS PubMed Google Scholar
- Aguirre, M., Jonkers, D. M., Troost, F. J. & Roeselers, G., Venema K. In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PLoS ONE 9, e113864 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Murphy, E. F. et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59, 1635–1642 (2010).
Article CAS PubMed Google Scholar
- Everard, A. et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat. Commun. 5, 5648 (2014).
Article CAS PubMed Google Scholar
- Tlaskalová-Hogenová, H. et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 8, 110–120 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Steinmeyer, S., Lee, K., Jayaraman, A. & Alaniz, R. C. Microbiota metabolite regulation of host immune homeostasis: a mechanistic missing link. Curr. Allergy Asthma Rep. 15, 24 (2015).
Article CAS PubMed Google Scholar
- Reikvam, D. H. et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS ONE 6, e17996 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Nguyen, T. L., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model Mech. 8, 1–16 (2015).
Article CAS PubMed PubMed Central Google Scholar
- De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).
Article PubMed PubMed Central Google Scholar
- Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).
Article CAS PubMed Google Scholar
- Kong, L. C. et al. Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS ONE 9, e109434 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).
Article CAS PubMed Google Scholar
- Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).
Article CAS PubMed Google Scholar
- Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).
Article CAS PubMed Google Scholar
- Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl Acad. Sci. USA 111, E2703–E2710 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Knights, D. et al. Rethinking 'enterotypes'. Cell Host Microbe 16, 433–437 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Jeffery, I. B., Claesson, M. J., O'Toole, P. W. & Shanahan, F. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10, 591–592 (2012).
Article CAS PubMed Google Scholar
- Koren, O. et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput. Biol. 9, e1002863 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Huse, S. M., Ye, Y., Zhou, Y. & Fodor, A. A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7, e34242 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Xu, Z. & Knight, R. Dietary effects on human gut microbiome diversity. Br. J. Nutr. 113, S1–S5 (2015).
Article CAS PubMed Google Scholar
- Voreades, N., Kozil, A. & Weir, T. L. Diet and the development of the human intestinal microbiome. Front. Microbiol. 5, 494 (2014).
Article PubMed PubMed Central Google Scholar
- Ravussin, Y. et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring) 20, 738–747 (2012).
Article CAS Google Scholar
- David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
Article CAS PubMed Google Scholar
- Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).
Article CAS PubMed Google Scholar
- Duncan, S. H. et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73, 1073–1078 (2007).
Article CAS PubMed Google Scholar
- Duncan, S. H. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 32, 1720–1724 (2008).
Article CAS Google Scholar
- Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).
Article CAS PubMed Google Scholar
- Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).
Article CAS PubMed Google Scholar
- Fernández-Real, J. M. et al. CD14 modulates inflammation-driven insulin resistance. Diabetes 60, 2179–2186 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).
Article CAS PubMed Google Scholar
- Carvalho, B. M. et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55, 2823–2834 (2012).
Article CAS PubMed Google Scholar
- Gummesson, A. et al. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity (Silver Spring) 19, 2280–2282 (2011).
Article Google Scholar
- Bischoff, S. C. et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).
Article CAS PubMed Google Scholar
- Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).
Article PubMed PubMed Central Google Scholar
- Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).
Article CAS PubMed Google Scholar
- Shin N.-R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).
Article CAS PubMed Google Scholar
- Khan, M. T., Nieuwdorp, M. & Bäckhed, F. Microbial modulation of insulin sensitivity. Cell Metab. 20, 753–760 (2014).
Article CAS PubMed Google Scholar
- Tilg, H. & Moschen, A. R. Microbiota and diabetes: an evolving relationship. Gut 63, 1513–1521 (2014).
Article CAS PubMed Google Scholar
- Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).
Article CAS PubMed Google Scholar
- Tilg, H. & Kaser, A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest. 121, 2126–2132 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
Article CAS PubMed Google Scholar
- Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut http://dx.doi.org/10.1136/gutjnl-2014-308778 (2015).
- Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).
Article PubMed PubMed Central Google Scholar
- Liou, A. P. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 5, 178ra41 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Aron-Wisnewsky, J. & Clement, K. The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity. Curr. Atheroscler. Rep. 16, 454 (2014).
Article CAS PubMed Google Scholar
- Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut http://dx.doi.org/10.1136/gutjnl-2014-307913 (2014).
- Karaki S.-I. et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39, 135–142 (2008).
Article CAS PubMed Google Scholar
- Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Quévrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut http://dx.doi.org/10.1136/gutjnl-2014-307649 (2015).
- Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).
Article CAS PubMed Google Scholar
- Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8, e71108 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Furet, J.-P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Sjöström, L. et al. Bariatric surgery and long-term cardiovascular events. JAMA 307, 56–65 (2012).
Article PubMed Google Scholar
- Sjöström, L. et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311, 2297–2304 (2014).
Article CAS PubMed Google Scholar
- Buse, J. B. et al. How do we define cure of diabetes? Diabetes Care 32, 2133–2135 (2009).
Article PubMed PubMed Central Google Scholar
- Tirosh, A. et al. Renal function following three distinct weight loss dietary strategies during 2 years of a randomized controlled trial. Diabetes Care 36, 2225–2232 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Chassaing, B., Ley, R. E. & Gewirtz, A. T. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology 147, 1363–1377.e17 (2014).
Article CAS PubMed Google Scholar
- Kim, M. -S., Hwang, S. -S., Park, E. -J. & Bae, J.-W. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ. Microbiol. Rep. 5, 765–775 (2013).
Article CAS PubMed Google Scholar
- Amar, J. et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54, 3055–3061 (2011).
Article CAS PubMed Google Scholar
- Surawicz, C. M. et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 108, 478–498 (2013).
Article CAS PubMed Google Scholar
- Youngster, I. et al. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 312, 1772–1778 (2014).
Article CAS PubMed Google Scholar
- van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).
Article CAS PubMed Google Scholar
- Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e7 (2012).
Article CAS PubMed Google Scholar
- Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA 108, S4592–S4598 (2011).
Article Google Scholar
- Spinler, S. A. et al. Frequency of attainment of low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol goals in cardiovascular clinical practice (from the National Cardiovascular Data Registry PINNACLE Registry). Am. J. Cardiol. 116, 547–553 (2015).
Article PubMed Google Scholar
- Tang, W. H. & Hazen, S. L. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 124, 4204–4211 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Mendelsohn, A. R. & Larrick, J. W. Dietary modification of the microbiome affects risk for cardiovascular disease. Rejuvenation Res. 16, 241–244 (2013).
Article CAS PubMed Google Scholar
- Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Lang, D. H. et al. Isoform specificity of trimethylamine _N_-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Biochem. Pharmacol. 56, 1005–1012 (1998).
Article CAS PubMed Google Scholar
- Stock J. Gut microbiota: an environmental risk factor for cardiovascular disease. Atherosclerosis 229, 440–442 (2013).
Article CAS PubMed Google Scholar
- Bennett, B. J. et al. Trimethylamine-_N_-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Trøseid, M. et al. Microbiota-dependent metabolite trimethylamine-_N_-oxide is associated with disease severity and survival of patients with chronic heart failure. J. Intern. Med. 277, 717–726 (2015).
Article CAS PubMed Google Scholar
- Tang, W. H. et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J. Card. Fail. 21, 91–96 (2015).
Article CAS PubMed Google Scholar
- Tang, W. H. et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-_N_-oxide in patients with heart failure: refining the gut hypothesis. J. Am. Coll. Cardiol. 64, 1908–1914 (2014).
Article CAS PubMed Google Scholar
- Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Wang, Z. et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-_N_-oxide. Eur. Heart J. 35, 904–910 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Gregory, J. C. et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem. 290, 5647–5660 (2015).
Article CAS PubMed Google Scholar
- Daviglus, M. L. et al. Fish consumption and the 30-year risk of fatal myocardial infarction. N. Engl. J. Med. 336, 1046–1053 (1997).
Article CAS PubMed Google Scholar
- Mozaffarian, D. & Wu, J. H. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 58, 2047–2067 (2011).
Article CAS PubMed Google Scholar
- Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Du, Y., Wang, L. & Hong, B. High-density lipoprotein-based drug discovery for treatment of atherosclerosis. Expert Opin. Drug Discov. 28, 1–15 (2015).
CAS Google Scholar
- Aron-Wisnewsky, J. et al. Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J. Clin. Endocrinol. Metab. 96, 1151–1159 (2011).
Article CAS PubMed Google Scholar
- Ussher, J. R., Lopaschuk, G. D. & Arduini, A. Gut microbiota metabolism of L-carnitine and cardiovascular risk. Atherosclerosis 231, 456–461 (2013).
Article CAS PubMed Google Scholar
- Ringseis, R., Keller, J. & Eder, K. Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur. J. Nutr. 51, 1–18 (2012).
Article CAS PubMed Google Scholar
- Muoio, D. M. et al. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab. 15, 764–777 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Broderick, T. L., Quinney, H. A., Barker, C. C. & Lopaschuk, G. D. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 87, 972–981 (1993).
Article CAS PubMed Google Scholar
- DiNicolantonio, J. J., Lavie, C. J., Fares, H., Menezes, A. R. & O'Keefe, J. H. L-carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin. Proc. 88, 544–551 (2013).
Article CAS PubMed Google Scholar
- Shang, R., Sun, Z. & Li, H. Effective dosing of L-carnitine in the secondary prevention of cardiovascular disease: a systematic review and meta-analysis. BMC Cardiovasc. Disord. 14, 88 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Lo, J. et al. Increased prevalence of subclinical coronary atherosclerosis detected by coronary computed tomography angiography in HIV-infected men. AIDS Lond. Engl. 24, 243–253 (2010).
Article Google Scholar
- Srinivasa, S. et al. Plaque burden in HIV-infected patients is associated with serum intestinal microbiota-generated trimethylamine. AIDS Lond. Engl. 29, 443–452 (2015).
Article CAS Google Scholar
- Stevens, P. E. & Levin, A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes clinical practice guideline. Ann. Intern. Med. 158, 825–830 (2012).
Article Google Scholar
- Akbari, A. et al. Canadian Society of Nephrology commentary on the KDIGO clinical practice guideline for CKD evaluation and management. Am. J. Kidney Dis. 65, 177–205 (2015).
Article CAS PubMed Google Scholar
- Vaziri, N. D. et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 83, 308–315 (2013).
Article PubMed Google Scholar
- Wong, J. et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 39, 230–237 (2014).
Article CAS PubMed Google Scholar
- Barros, A. F. et al. Is there interaction between gut microbial profile and cardiovascular risk in chronic kidney disease patients? Future Microbiol. 10, 517–526 (2015).
Article CAS PubMed Google Scholar
- Stenvinkel, P., Lindholm, B., Heimbürger, M. & Heimbürger, O. Elevated serum levels of soluble adhesion molecules predict death in pre-dialysis patients: association with malnutrition, inflammation, and cardiovascular disease. Nephrol. Dial. Transplant. 15, 1624–1630 (2000).
Article CAS PubMed Google Scholar
- Tripepi, G., Mallamaci, F. & Zoccali, C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J. Am. Soc. Nephrol. 16, S83–S88 (2005).
Article CAS PubMed Google Scholar
- Wang, F. et al. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrol. (Carlton) 17, 733–738 (2012).
Article CAS Google Scholar
- Shi, K. et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig. Dis. Sci. 59, 2109–2117 (2014).
Article CAS PubMed Google Scholar
- Vaziri, N. D. Gut microbial translocation in the pathogenesis of systemic inflammation in patients with end-stage renal disease. Dig. Dis. Sci. 59, 2020–2022 (2014).
Article PubMed Google Scholar
- Savassi-Rocha, A. L. et al. Changes in intestinal permeability after Roux-en-Y gastric bypass. Obes. Surg. 24, 184–190 (2014).
Article PubMed Google Scholar
- Magnusson, M., Magnusson, K. E., Sundqvist, T. & Denneberg, T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut 32, 754–759 (1991).
Article CAS PubMed PubMed Central Google Scholar
- Magnusson, M., Magnusson, K. E., Sundqvist, T. & Denneberg, T. Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets. Nephron 56, 306–311 (1990).
Article CAS PubMed Google Scholar
- Fogelman, A. M. TMAO is both a biomarker and a renal toxin. Circ. Res. 116, 396–397 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Bain, M. A., Faull, R., Fornasini, G., Milne, R. W. & Evans, A. M. Accumulation of trimethylamine and trimethylamine-_N_-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol. Dial. Transplant. 21, 1300–1304 (2006).
Article CAS PubMed Google Scholar
- Kaysen, G. A. et al. Associations of trimethylamine _N_-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J. Ren. Nutr. 25, 351–356 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Stubbs, J. R. et al. Serum trimethylamine-_N_-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014111063 (2015).
- Bain, M. A., Faull, R., Milne, R. W. & Evans, A. M. Oral L -carnitine: metabolite formation and hemodialysis. Curr. Drug Metab. 7, 811–816 (2006).
Article CAS PubMed Google Scholar
- Tang, W. H. et al. Gut microbiota-dependent trimethylamine _N_-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 116, 448–455 (2015).
Article CAS PubMed Google Scholar
- Onopiuk, A., Tokarzewicz, A. & Gorodkiewicz, E. Cystatin C: a kidney function biomarker. Adv. Clin. Chem. 68, 57–69 (2015).
Article CAS PubMed Google Scholar
- Levey, A. S., Fan, L., Eckfeldt, J. H. & Inker, L. A. Cystatin C for glomerular filtration rate estimation: coming of age. Clin. Chem. 60, 916–919 (2014).
Article CAS PubMed Google Scholar
- Scarpellini, E. et al. The human gut microbiota and virome: potential therapeutic implications. Dig. Liver Dis. http://dx.doi.org/10.1016/j.dld.2015.07.008 (2015).
- Focà, A. et al. Gut inflammation and immunity: what isthe role of the human gut virome? Med. Inflamm. 2015, 326032 (2015).
Article CAS Google Scholar
- Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Hopkins, M. J., Sharp. R. & Macfarlane, G. T. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48, 198–205 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Hopkins, M. J. & Macfarlane, G. T. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J. Med. Microbiol. 51, 448–454 (2002).
Article CAS PubMed Google Scholar
- Antonopoulos, D. A. et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect. Immun. 77, 2367–2375 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Macfarlane, S. Antibiotic treatments and microbes in the gut. Environ. Microbiol. 16, 919–924 (2014).
Article CAS PubMed Google Scholar
- Ward, E. K. et al. The effect of PPI use on human gut microbiota and weight loss in patients undergoing laparoscopic Roux-en-Y gastric bypass. Obes. Surg. 24, 1567–1571 (2014).
Article PubMed Google Scholar
- Tsuda, A. et al. Influence of proton-pump inhibitors on the luminal microbiota in the gastrointestinal tract. Clin. Transl. Gastroenterol. 6, e89 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Allais, L. et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.12934 (2015).
- Osto, M. et al. Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiol. Behav. 119, 92–96 (2013).
Article CAS PubMed Google Scholar
- Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22, 228–238 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Thomas, V., Clark, J. & Doré, J. Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiol. 10, 1485–1504 (2015).
Article CAS PubMed Google Scholar
- Kennedy, N. A. et al. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS ONE 9, e88982 (2014).
Article CAS PubMed PubMed Central Google Scholar