SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation (original) (raw)

References

  1. Schmid, S. L., McNiven, M. A. & De Camilli, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 10, 504–512 (1998).
    Article CAS PubMed Google Scholar
  2. Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999).
    Article CAS PubMed Google Scholar
  3. David, C., McPherson, P. S., Mundigl, O. & deCamilli, P. A. Role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc.Natl Acad. Sci. USA 93, 331–335 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  4. Leprince, C. et al. A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J. Biol. Chem. 272 , 15101–15105 (1997).
    Article CAS PubMed Google Scholar
  5. Ramjaun, A. R., Micheva, K. D., Bouchelet, I. & McPherson, P. S. Identification and characterization of a nerve terminal-enriched amphiphysin isoform. J. Biol. Chem. 272, 16700– 16706 (1997).
    Article CAS PubMed Google Scholar
  6. de Heuvel, E. _et al._Identification of the major synaptojanin-binding proteins in brain. J. Biol.Chem. 272, 8710– 8716 (1997).
    Article CAS PubMed Google Scholar
  7. Ringstad, N., Nemoto, Y. & De Camilli, P. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc.Natl Acad. Sci. USA 94, 8569– 8574 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  8. Roos, J. & Kelly, R. B. Dap160, a neural-specific eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. J. Biol.Chem. 273, 19108–19119 (1998).
    Article CAS PubMed Google Scholar
  9. Yamabhai, M. et al. Intersectin, a novel adaptor protein with two eps15 homology and five src homology3 domains. J. Biol. Chem. 273, 31401–31407 (1998).
    Article CAS PubMed Google Scholar
  10. Senger, A. S., Wang, W., Bishay, J., Cohen, S. & Egan, S. E. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J. 18, 1159–1171 (1999).
    Article Google Scholar
  11. Qualmann, B., Roos, J., DiGregorio, P. J. & Kelly, R. B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol.Cell 10 , 501–513 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  12. Gout, I. _et al._The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36 (1993).
    Article CAS PubMed Google Scholar
  13. McPherson, P. S. _et al._A presynaptic inositol 5 phosphatase. Nature 379, 353–357 (1996).
    Article CAS PubMed Google Scholar
  14. McPherson, P. S. _et al._Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc. Natl Acad. Sci. USA 91, 6486–6490 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  15. Wigge, P. & McMahon, H. T. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci. 21 339–344 ( 1998).
    Article CAS PubMed Google Scholar
  16. Shupliakov, O. _et al._Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259– 263 (1997).
    Article CAS PubMed Google Scholar
  17. Wigge, P., Vallis, Y. & McMahon, H. T. Inhibition of receptor-mediated endocytosis by the amphiphysin SH3 domain. Curr. Biol. 7, 554 –560 (1997).
    Article CAS PubMed Google Scholar
  18. Di Fiore, P. P., Pelicci, P. G. & Sorkin, A. EH: a novel protein-protein interaction domain potentially involved in intracellular sorting. Trends Biochem. Sci. 22, 411–413 (1997).
    Article CAS PubMed Google Scholar
  19. Hussain, N. K. et al. Splice variants of intersectin are components of the endocytic machinery in neurons and non-neuronal cells. J. Biol. Chem. 274, 15671–15677 (1999).
    Article CAS PubMed Google Scholar
  20. Mahaffey, D. T., Moore, M. S., Brodsky, F. M. & Anderson, R. G. W. Coat proteins isolated from clathrin coated vesicles can assemble into coated pits. J. Cell Biol. 108, 1615– 1624 (1989).
    Article CAS PubMed Google Scholar
  21. Lin, H. C., Moore, M. S., Sanan, D. A. & Anderson, R. G. W. Reconstitution of clathrin-coated pit budding from plasma membranes. J. Cell Biol. 114, 881–891 (1991).
    Article CAS PubMed Google Scholar
  22. Gilbert, A., Paccaud, J. P. & Carpentier, J. L. Direct measurement of clathrin-coated vesicle formation using a cell-free assay. J. Cell Sci. 110, 3105–3115 (1997).
    CAS PubMed Google Scholar
  23. Schmid, S. L. & Smythe, E. Stage-specific assays for coated pit formation and coated vesicle budding invitro. J. Cell Biol. 114, 869–880 ( 1991).
    Article CAS PubMed Google Scholar
  24. Smythe, E., Carter, L. L. & Schmid, S. L. Cytosol- and clathrin-dependent stimulation of endocytosis invitro by purified adaptors. J. Cell Biol. 119 , 1163–1171 (1992).
    Article CAS PubMed Google Scholar
  25. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: An integrated process . Annu. Rev. Biochem. 66, 511– 548 (1997).
    Article CAS PubMed Google Scholar
  26. Orci, L. _et al._Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature 362, 648–652 (1993).
    Article CAS PubMed Google Scholar
  27. Barlowe, C. _et al._COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).
    Article CAS PubMed Google Scholar
  28. Damke, H., Baba, T., Warnock, D. E. & Schmid, S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934 (1994).
    Article CAS PubMed Google Scholar
  29. Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101– 114 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  30. Ostermann, J. et al. Stepwise assembly of functionally active transport vesicles . Cell 75, 1015–1025 (1993).
    Article CAS PubMed Google Scholar
  31. Rowe, T. et al. COPII vesicles derived from mammalian endoplasmic reticulum (ER) microsomes recruit COP1. J.Cell Biol. 135, 895–911 (1996).
    Article CAS PubMed Google Scholar
  32. Jost, M., Simpson, F., Kavran, J. M., Lemmon, M. A. & Schmid, S. L. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 8, 1399–1402 ( 1998).
    Article CAS PubMed Google Scholar
  33. Achiriloaie, M., Barylko, B. & Albenesi, J. P. Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol. Cell Biol. 19, 1410–1415 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  34. Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Curr. Biol. 9, 261–264 ( 1999).
    Article PubMed Google Scholar
  35. Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol. 9, 257–260 (1999).
    Article CAS PubMed Google Scholar
  36. Carter, L. L., Redelmeier, T. E., Woolenweber, L. A. & Schmid, S. L. Multiple GTP-binding proteins participate in clathrin-coated vesicle-mediated endocytosis. J. Cell Biol. 120, 37– 45 (1993).
    Article CAS PubMed Google Scholar
  37. Micheva, K. D., Kay, B. K. & McPherson, P. S. Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. J. Biol. Chem. 272, 27239–27245 (1997).
    Article CAS PubMed Google Scholar
  38. Wang, Z. & Moran, M. F. Requirement for the adapter protein GRB2 in EGF receptor endocytosis. Science 272, 1935–1939 (1996).
    Article CAS PubMed Google Scholar
  39. Sparks, A. B. _et al._Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCg, Crk, and Grb2. Proc. Natl Acad. Sci. USA 93, 1540–1544 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  40. Robinson, P. J. et al. Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature 365, 163– 166 (1993).
    Article CAS PubMed Google Scholar
  41. Lamaze, C., Baba, T., Redelmeier, T. E. & Schmid, S. L. Recruitment of epidermal growth factor receptor and transferrin receptors into coated pits in vitro: differing biochemical requirements. Mol. Biol. Cell 3, 1181–1194 (1993).
    Google Scholar
  42. Schmid, S. L. & Carter, L. L. ATP is required for receptor-mediated endocytosis in intact cells. J.Cell Biol. 111, 2307–2318 (1990).
    Article CAS PubMed Google Scholar
  43. Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction . J. Cell Biol. 57, 315– 344 (1973).
    Article CAS PubMed PubMed Central Google Scholar
  44. Estes, P. S. et al. Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment specific markers. J. Neurosci. 16, 5443–5456 ( 1996).
    Article CAS PubMed PubMed Central Google Scholar
  45. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated pit dynamics in living cells. Nature Cell Biol. 1, 1–7 ( 1999).
    Article CAS PubMed Google Scholar
  46. Micheva, K. D., Ramjaun, A. R., Kay, B. K. & McPherson, P. S. SH3 domain-dependent interactions of endophilin with amphiphysin. FEBS Lett. 414, 308–312 (1997).
    Article CAS PubMed Google Scholar
  47. Warnock, D. E., Terlecky, L. J. & Schmid, S. L. Dynamin GTPase is stimulated by crosslinking through the C-terminal proline-rich domain. EMBO J. 14, 1322–1328 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  48. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Publications, Cold SpringHarbor, 1988 ).
    Google Scholar
  49. Warnock, D. E., Baba, T. & Schmid, S. L. Ubiquitously expressed dynamin-II has a higher intrinsic GTPase activity and a greater propensity for self-assembly than neuronaldynamin-I . Mol. Biol. Cell 8, 2553– 2562 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  50. Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 16, 6676– 6683 (1997).
    Article CAS PubMed PubMed Central Google Scholar

Download references