SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation (original) (raw)
References
Schmid, S. L., McNiven, M. A. & De Camilli, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol.10, 504–512 (1998). ArticleCASPubMed Google Scholar
Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis. Nature398, 481–486 (1999). ArticleCASPubMed Google Scholar
David, C., McPherson, P. S., Mundigl, O. & deCamilli, P. A. Role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc.Natl Acad. Sci. USA93, 331–335 (1996). ArticleCASPubMedPubMed Central Google Scholar
Leprince, C. et al. A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J. Biol. Chem.272 , 15101–15105 (1997). ArticleCASPubMed Google Scholar
Ramjaun, A. R., Micheva, K. D., Bouchelet, I. & McPherson, P. S. Identification and characterization of a nerve terminal-enriched amphiphysin isoform. J. Biol. Chem.272, 16700– 16706 (1997). ArticleCASPubMed Google Scholar
de Heuvel, E. _et al._Identification of the major synaptojanin-binding proteins in brain. J. Biol.Chem.272, 8710– 8716 (1997). ArticleCASPubMed Google Scholar
Ringstad, N., Nemoto, Y. & De Camilli, P. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc.Natl Acad. Sci. USA94, 8569– 8574 (1997). ArticleCASPubMedPubMed Central Google Scholar
Roos, J. & Kelly, R. B. Dap160, a neural-specific eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. J. Biol.Chem.273, 19108–19119 (1998). ArticleCASPubMed Google Scholar
Yamabhai, M. et al. Intersectin, a novel adaptor protein with two eps15 homology and five src homology3 domains. J. Biol. Chem.273, 31401–31407 (1998). ArticleCASPubMed Google Scholar
Senger, A. S., Wang, W., Bishay, J., Cohen, S. & Egan, S. E. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J.18, 1159–1171 (1999). Article Google Scholar
Qualmann, B., Roos, J., DiGregorio, P. J. & Kelly, R. B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol.Cell10 , 501–513 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gout, I. _et al._The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell75, 25–36 (1993). ArticleCASPubMed Google Scholar
McPherson, P. S. _et al._Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc. Natl Acad. Sci. USA91, 6486–6490 (1994). ArticleCASPubMedPubMed Central Google Scholar
Wigge, P. & McMahon, H. T. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci.21 339–344 ( 1998). ArticleCASPubMed Google Scholar
Shupliakov, O. _et al._Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science276, 259– 263 (1997). ArticleCASPubMed Google Scholar
Wigge, P., Vallis, Y. & McMahon, H. T. Inhibition of receptor-mediated endocytosis by the amphiphysin SH3 domain. Curr. Biol.7, 554 –560 (1997). ArticleCASPubMed Google Scholar
Di Fiore, P. P., Pelicci, P. G. & Sorkin, A. EH: a novel protein-protein interaction domain potentially involved in intracellular sorting. Trends Biochem. Sci.22, 411–413 (1997). ArticleCASPubMed Google Scholar
Hussain, N. K. et al. Splice variants of intersectin are components of the endocytic machinery in neurons and non-neuronal cells. J. Biol. Chem.274, 15671–15677 (1999). ArticleCASPubMed Google Scholar
Mahaffey, D. T., Moore, M. S., Brodsky, F. M. & Anderson, R. G. W. Coat proteins isolated from clathrin coated vesicles can assemble into coated pits. J. Cell Biol.108, 1615– 1624 (1989). ArticleCASPubMed Google Scholar
Lin, H. C., Moore, M. S., Sanan, D. A. & Anderson, R. G. W. Reconstitution of clathrin-coated pit budding from plasma membranes. J. Cell Biol.114, 881–891 (1991). ArticleCASPubMed Google Scholar
Gilbert, A., Paccaud, J. P. & Carpentier, J. L. Direct measurement of clathrin-coated vesicle formation using a cell-free assay. J. Cell Sci.110, 3105–3115 (1997). CASPubMed Google Scholar
Schmid, S. L. & Smythe, E. Stage-specific assays for coated pit formation and coated vesicle budding invitro. J. Cell Biol.114, 869–880 ( 1991). ArticleCASPubMed Google Scholar
Smythe, E., Carter, L. L. & Schmid, S. L. Cytosol- and clathrin-dependent stimulation of endocytosis invitro by purified adaptors. J. Cell Biol.119 , 1163–1171 (1992). ArticleCASPubMed Google Scholar
Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: An integrated process . Annu. Rev. Biochem.66, 511– 548 (1997). ArticleCASPubMed Google Scholar
Orci, L. _et al._Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature362, 648–652 (1993). ArticleCASPubMed Google Scholar
Barlowe, C. _et al._COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell77, 895–907 (1994). ArticleCASPubMed Google Scholar
Damke, H., Baba, T., Warnock, D. E. & Schmid, S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol.127, 915–934 (1994). ArticleCASPubMed Google Scholar
Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol.141, 101– 114 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ostermann, J. et al. Stepwise assembly of functionally active transport vesicles . Cell75, 1015–1025 (1993). ArticleCASPubMed Google Scholar
Rowe, T. et al. COPII vesicles derived from mammalian endoplasmic reticulum (ER) microsomes recruit COP1. J.Cell Biol.135, 895–911 (1996). ArticleCASPubMed Google Scholar
Jost, M., Simpson, F., Kavran, J. M., Lemmon, M. A. & Schmid, S. L. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol.8, 1399–1402 ( 1998). ArticleCASPubMed Google Scholar
Achiriloaie, M., Barylko, B. & Albenesi, J. P. Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol. Cell Biol.19, 1410–1415 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Curr. Biol.9, 261–264 ( 1999). ArticlePubMed Google Scholar
Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol.9, 257–260 (1999). ArticleCASPubMed Google Scholar
Carter, L. L., Redelmeier, T. E., Woolenweber, L. A. & Schmid, S. L. Multiple GTP-binding proteins participate in clathrin-coated vesicle-mediated endocytosis. J. Cell Biol.120, 37– 45 (1993). ArticleCASPubMed Google Scholar
Micheva, K. D., Kay, B. K. & McPherson, P. S. Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. J. Biol. Chem.272, 27239–27245 (1997). ArticleCASPubMed Google Scholar
Wang, Z. & Moran, M. F. Requirement for the adapter protein GRB2 in EGF receptor endocytosis. Science272, 1935–1939 (1996). ArticleCASPubMed Google Scholar
Sparks, A. B. _et al._Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCg, Crk, and Grb2. Proc. Natl Acad. Sci. USA93, 1540–1544 (1996). ArticleCASPubMedPubMed Central Google Scholar
Robinson, P. J. et al. Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature365, 163– 166 (1993). ArticleCASPubMed Google Scholar
Lamaze, C., Baba, T., Redelmeier, T. E. & Schmid, S. L. Recruitment of epidermal growth factor receptor and transferrin receptors into coated pits in vitro: differing biochemical requirements. Mol. Biol. Cell3, 1181–1194 (1993). Google Scholar
Schmid, S. L. & Carter, L. L. ATP is required for receptor-mediated endocytosis in intact cells. J.Cell Biol.111, 2307–2318 (1990). ArticleCASPubMed Google Scholar
Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction . J. Cell Biol.57, 315– 344 (1973). ArticleCASPubMedPubMed Central Google Scholar
Estes, P. S. et al. Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment specific markers. J. Neurosci.16, 5443–5456 ( 1996). ArticleCASPubMedPubMed Central Google Scholar
Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated pit dynamics in living cells. Nature Cell Biol.1, 1–7 ( 1999). ArticleCASPubMed Google Scholar
Micheva, K. D., Ramjaun, A. R., Kay, B. K. & McPherson, P. S. SH3 domain-dependent interactions of endophilin with amphiphysin. FEBS Lett.414, 308–312 (1997). ArticleCASPubMed Google Scholar
Warnock, D. E., Terlecky, L. J. & Schmid, S. L. Dynamin GTPase is stimulated by crosslinking through the C-terminal proline-rich domain. EMBO J.14, 1322–1328 (1995). ArticleCASPubMedPubMed Central Google Scholar
Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Publications, Cold SpringHarbor, 1988 ). Google Scholar
Warnock, D. E., Baba, T. & Schmid, S. L. Ubiquitously expressed dynamin-II has a higher intrinsic GTPase activity and a greater propensity for self-assembly than neuronaldynamin-I . Mol. Biol. Cell8, 2553– 2562 (1997). ArticleCASPubMedPubMed Central Google Scholar
Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J.16, 6676– 6683 (1997). ArticleCASPubMedPubMed Central Google Scholar