Schofield, P. R. et al. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature328, 221–227 (1987). ArticleCASPubMed Google Scholar
Grenningloh, G. et al. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature328, 215–220 (1987). ArticleCASPubMed Google Scholar
Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M. & Julius, D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science254, 432–437 ( 1991). ArticleCASPubMed Google Scholar
Julius, D. Molecular biology of serotonin receptors. Annu. Rev. Neurosci.14, 335–360 ( 1991). ArticleCASPubMed Google Scholar
Unwin, N. The nicotinic acetylcholine receptor of the Torpedo electric ray. J. Struct. Biol.121, 181–190 (1998). ArticleCASPubMed Google Scholar
Grenningloh, G. et al. Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. EMBO J.9, 771–776 (1990). ArticleCASPubMedPubMed Central Google Scholar
Betz, H. et al. Structure and functions of inhibitory and excitatory glycine receptors . Ann. NY Acad. Sci.868, 667– 676 (1999). ArticleCASPubMed Google Scholar
Harvey, R. J. & Betz, H. in Pharmacology of Ionic Channel Function: Activators and Inhibitors (eds Endo, M., Kurachi, Y. & Mishina, M.) 479–497 (Springer–Verlag, Berlin, 2000). Book Google Scholar
Kuhse, J. et al. Alternative splicing generates two isoforms of the α2 subunit of the inhibitory glycine receptor. FEBS Lett.283, 73–77 (1991). ArticleCASPubMed Google Scholar
Langosch, D., Thomas, L. & Betz, H. Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc. Natl Acad. Sci. USA85, 7394–7398 ( 1988). ArticleCASPubMedPubMed Central Google Scholar
Becker, C. M., Hoch, W. & Betz, H. Glycine receptor heterogeneity in rat spinal cord during postnatal development . EMBO J.7, 3717–3726 (1988). ArticleCASPubMedPubMed Central Google Scholar
Sieghart, W. Unraveling the function of GABAA receptor subtypes. Trends Pharmacol. Sci.21, 411–413 (2000). ArticleCASPubMed Google Scholar
Rabow, L. E., Russek, S. J. & Farb, D. H. From ion currents to genomic analysis: Recent advances in GABAA receptor research. Synapse21, 189–274 (1995). ArticleCASPubMed Google Scholar
Davies, P. A., Hanna, M. C., Hales, T. G. & Kirkness, E. F. Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature385, 820– 823 (1997). ArticleCASPubMed Google Scholar
Hedblom, E. & Kirkness, E. F. A novel class of GABAA receptor subunit in tissues of the reproductive system. J. Biol. Chem.272, 15346–15350 (1997). ArticleCASPubMed Google Scholar
Laurie, D. J., Wisden, W. & Seeburg, P. H. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci.12, 4151–4172 (1992). ArticleCASPubMedPubMed Central Google Scholar
Fritschy, J.-M. & Mohler, H. GABAA receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol.359, 154–194 (1995). ArticleCASPubMed Google Scholar
Connolly, C. N., Krishek, B. J., McDonald, B. J., Smart, T. G. & Moss, S. J. Assembly and cell surface expression of heteromeric and homomeric γ-aminobutyric acid type A receptors. J. Biol. Chem.271, 89–96 (1996). ArticleCASPubMed Google Scholar
Gorrie, G. H. et al. Assembly of GABAA receptors composed of α1 and β2 subunits in both cultured neurons and fibroblasts. J. Neurosci.17, 6587–6596 (1997). ArticleCASPubMedPubMed Central Google Scholar
Taylor, P. M. et al. Identification of amino acid residues within GABAA receptor β subunits that mediate both homomeric and heteromeric receptor expression. J. Neurosci.19, 6360– 6371 (1999). ArticleCASPubMedPubMed Central Google Scholar
Taylor, P. M. et al. Identification of residues within GABA(A) receptor α subunits that mediate specific assembly with receptor β subunits. J. Neurosci.20, 1297–1306 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sigel, E., Baur, R., Malherbe, P. & Mohler, H. The rat β 1-subunit of the GABAA receptor forms a picrotoxin- sensitive anion channel open in the absence of GABA. FEBS Lett.257, 377–379 (1989). ArticleCASPubMed Google Scholar
Krishek, B. J., Moss, S. J. & Smart, T. G. Homomeric β1 γ-aminobutyric acid A receptor-ion channels: evaluation of pharmacological and physiological properties. Mol. Pharmacol.49, 494– 504 (1996). CASPubMed Google Scholar
Wooltorton, J. R., Moss, S. J. & Smart, T. G. Pharmacological and physiological characterization of murine homomeric β3 GABAA receptors. Eur. J. Neurosci.9, 2225–2235 ( 1997). ArticleCASPubMed Google Scholar
Connolly, C. N. et al. Subcellular localization and endocytosis of homomeric γ2 subunit splice variants of γ-aminobutyric acid type A receptors. Mol. Cell. Neurosci.13, 259–271 (1999). ArticleCASPubMed Google Scholar
Sanna, E., Garau, F. & Harris, R. A. Novel properties of homomeric β1 γ-aminobutyric acid type A receptors: actions of the anesthetics propofol and pentobarbital . Mol. Pharmacol.47, 213– 217 (1995). CASPubMed Google Scholar
Pritchett, D. B. et al. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature338, 582–585 (1989). ArticleCASPubMed Google Scholar
Angelotti, T. P. & MacDonald, R. L. Assembly of GABAA receptor subunits: α1 β1 and α1 β1 γ2S subunits produce unique ion channels with dissimilar single- channel properties. J. Neurosci.13, 1429–1440 (1993). ArticleCASPubMedPubMed Central Google Scholar
Tretter, V., Ehya, N., Fuchs, K. & Sieghart, W. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci.17, 2728–2737 (1997). ArticleCASPubMedPubMed Central Google Scholar
Farrar, S. J., Whiting, P. J., Bonnert, T. P. & McKernan, R. M. Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J. Biol. Chem. 274, 10100– 10104 (1999). ArticleCASPubMed Google Scholar
Shivers, B. D. et al. Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron3, 327– 337 (1989). ArticleCASPubMed Google Scholar
Whiting, P. J. et al. Neuronally restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J. Neurosci.17, 5027– 6037 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rudolph, U. et al. Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature401, 796–800 (1999). ArticleCASPubMed Google Scholar
Low, K. et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science290, 131– 134 (2000). ArticleCASPubMed Google Scholar
McKernan, R. M. et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nature Neurosci.3, 587–592 (2000). ArticleCASPubMed Google Scholar
Nusser, Z., Sieghart, W., Benke, D., Fritschy, J.-M. & Somogyi, P. Differential synaptic localization of two major γ-aminobutyric acid type A receptor α subunits on hippocampal pyramidal cells. Proc. Natl Acad. Sci. USA93, 11939– 11944 (1996). ArticleCASPubMedPubMed Central Google Scholar
Fritschy, J. M., Johnson, D. K., Mohler, H. & Rudolph, U. Independent assembly and subcellular targeting of GABAA-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo . Neurosci. Lett.249, 99– 102 (1998). ArticleCASPubMed Google Scholar
Jones, A. et al. Ligand-gated ion channel subunit partnerships: GABAA receptor α6 subunit gene inactivation inhibits δ subunit expression. J. Neurosci.17, 1350– 1362 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci.18, 1693–1703 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sassoe-Pognetto, M., Panzanelli, P., Sieghart, W. & Fritschy, J. M. Co-localization of multiple GABAA receptor subtypes with gephyrin at postsynaptic sites. J. Comp Neurol.420, 481–498 (2000).The colocalization of gephyrin and GABAA-receptor immunoreactivity was examined at both the light and electron microscopic levels with antibodies selective for α1–3 and γ2 subunits. The authors showed a consistent colocalization for these receptor subunits and gephyrin in several brain regions, including cerebellum, hippocampus, thalamus and olfactory bulb. ArticleCASPubMed Google Scholar
Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes . J. Neurosci.19, 2960– 2973 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dotti, C. G., Parton, R. G. & Simons, K. Polarized sorting of glypiated proteins in hippocampal neurons. Nature349, 158– 161 (1991). ArticleCASPubMed Google Scholar
Jareb, M. & Banker, G. The polarized sorting of membrane proteins expressed in cultured hippocampal neurons using viral vectors. Neuron20, 855–867 ( 1998). ArticleCASPubMed Google Scholar
Connolly, C. N., Wooltorton, J. R., Smart, T. G. & Moss, S. J. Subcellular localization of γ-aminobutyric acid type A receptors is determined by receptor β-subunits. Proc. Natl Acad. Sci. USA93, 9899–9904 ( 1996). ArticleCASPubMedPubMed Central Google Scholar
Cutting, G. R. et al. Cloning of the γ-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina. Proc. Natl Acad. Sci. USA88, 2673–2677 (1991). ArticleCASPubMedPubMed Central Google Scholar
Lukasiewicz, P. D. GABAC receptors in the vertebrate retina. Mol. Neurobiol.12, 181–194 ( 1996). ArticleCASPubMed Google Scholar
Hackam, A. S., Wang, T.-L., Guggino, W. B. & Cutting, G. R. Sequences in the amino termini of GABAρ and GABAA subunits specify their selective interaction in vitro. J. Neurochem.70, 40–46 ( 1998). ArticleCASPubMed Google Scholar
Hackam, A. S., Guggino, W. B. & Cutting, G. R. The N-terminal domain of human GABA receptor _p_1 subunits contains signals for homooligomeric and heterooligomeric interaction . J. Biol. Chem.272, 13750– 13757 (1997). ArticleCASPubMed Google Scholar
Qian, H. & Ripps, H. Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA ρ- and γ 2-subunits. Proc. R. Soc. Lond. B266, 2419–2425 (1999). ArticleCAS Google Scholar
Pan, Z. H., Zhang, D., Zhang, X. & Lipton, S. A. Evidence for coassembly of mutant GABAC ρ1 with GABAA γ2S, glycine α1 and glycine α2 receptor subunits in vitro. Eur. J. Neurosci.12, 3137–3145 (2000). ArticleCASPubMed Google Scholar
Koulen, P., Brandstatter, J. H., Enz, R., Bormann, J. & Wassle, H. Synaptic clustering of GABA(C) receptor rho-subunits in the rat retina. Eur. J. Neurosci.10 , 115–127 (1998). ArticleCASPubMed Google Scholar
Koulen, P. et al. Immunocytochemical localization of the GABAC receptor rho subunits in the cat, goldfish, and chicken retina. J. Comp. Neurol.380, 520–532 ( 1997). ArticleCASPubMed Google Scholar
Schmitt, B., Knaus, P., Becker, C. M. & Betz, H. The M r 93,000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein. Biochemistry26, 805–811 (1987). ArticleCASPubMed Google Scholar
Johnson, J. L. & Wadman, S. K. in The Metabolic Basis of Inherited Diseases (eds Scrivner, C. R., Beaudef, A. L., Sly, W. S. & Valle, D.) 2271–2283 (McGraw–Hill, New York, 2001). Google Scholar
Prior, P. et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron8, 1161–1170 (1992). ArticleCASPubMed Google Scholar
Ramming, M. et al. Diversity and phylogeny of gephyrin: tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-synthesizing and cytoskeleton-associated proteins. Proc. Natl Acad. Sci. USA97, 10266–10271 ( 2000). ArticleCASPubMedPubMed Central Google Scholar
Kirsch, J. & Betz, H. Widespread expression of gephyrin, a putative glycine receptor-tubulin linker protein, in rat brain. Brain Res.621, 301–310 (1993). ArticleCASPubMed Google Scholar
Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron15, 563–572 ( 1995).Using a mutagenic approach, a specific 20-amino-acid motif unique to the glycine receptor β-subunit was identified to mediate binding to gephyrin. This motif is absent from all glycine receptor α-subunits and also GABAAreceptor subunits. ArticleCASPubMed Google Scholar
Kins, S., Kuhse, J., Laube, B., Betz, H. & Kirsch, J. Incorporation of a gephyrin-binding motif targets NMDA receptors to gephyrin-rich domains in HEK 293 cells. Eur. J. Neurosci.11, 740–744 ( 1999). ArticleCASPubMed Google Scholar
Kneussel, M., Hermann, A., Kirsch, J. & Betz, H. Hydrophobic interactions mediate binding of the glycine receptor β-subunit to gephyrin. J. Neurochem.72, 1323–1326 (1999). ArticleCASPubMed Google Scholar
Kirsch, J., Kuhse, J. & Betz, H. Targeting of glycine receptor subunits to gephryin-rich domains in transfected human embryonic kidney cells. Mol. Cell. Neurosci.6, 450–461 (1995). ArticleCASPubMed Google Scholar
Kirsch, J. et al. The 93-kDa glycine receptor-associated protein binds to tubulin . J. Biol. Chem.266, 22242– 22245 (1991). ArticleCASPubMed Google Scholar
Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature366, 745–748 ( 1993). ArticleCASPubMed Google Scholar
Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science282, 1321–1324 (1998). Production of a gephryin knockout mouse. The phenotype is lethal and the mouse shows an exaggerated startle response and loss of glycine receptor clustering. In addition, there are gross metabolic deficits in agreement with a role for gephyrin in the production of the Moco cofactor essential for the function of molybdenum-containing enzymes. ArticleCASPubMed Google Scholar
Sabatini, D. M. et al. Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science284, 1161– 1164 (1999). ArticleCASPubMed Google Scholar
Kins, S., Betz, H. & Kirsch, J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nature Neurosci.3, 22–29 (2000). ArticleCASPubMed Google Scholar
Reid, T., Bathoorn, A., Ahmadian, M. R. & Collard, J. G. Identification and characterization of hPEM-2, a guanine nucleotide exchange factor specific for Cdc42. J. Biol. Chem.274, 33587–33593 (1999). ArticleCASPubMed Google Scholar
Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell81, 53–62 (1995). ArticleCASPubMed Google Scholar
Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev.11, 2295– 2322 (1997). ArticleCASPubMed Google Scholar
Mammoto, A. et al. Interactions of drebrin and gephyrin with profilin. Biochem. Biophys. Res. Commun.243, 86– 89 (1998). ArticleCASPubMed Google Scholar
Schluter, K., Jockusch, B. M. & Rothkegel, M. Profilins as regulators of actin dynamics. Biochim. Biophys. Acta1359, 97–109 (1997). ArticleCASPubMed Google Scholar
Witke, W. et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J.17, 967–976 (1998). ArticleCASPubMedPubMed Central Google Scholar
Snyder, S. H. et al. Neural actions of immunophilin ligands. Trends Pharmacol. Sci.19, 21–26 (1998). ArticleCASPubMed Google Scholar
Racca, C., Gardiol, A. & Triller, A. Dendritic and postsynaptic localizations of glycine receptor α subunit mRNAs. J. Neurosci.17, 1691–1700 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kirsch, J. & Betz, H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature392 , 717–720 (1998). These authors proposed the activation model for glycine synaptogenesis. The model that glycine release from nerve terminals causes postsynaptic depolarization, voltage-dependent calcium channel activation and gephyrin accumulation. ArticleCASPubMed Google Scholar
Levi, S., Vannier, C. & Triller, A. Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J. Cell Sci.111, 335 –345 (1998). ArticleCASPubMed Google Scholar
Levi, S., Chesnoy-Marchais, D., Sieghart, W. & Triller, A. Synaptic control of glycine and GABAA receptors and gephyrin expression in cultured motoneurons. J. Neurosci.19, 7434–7449 (1999). Using mixed cultures of motoneurons and spinal interneurons, the authors suggest that the identity of the presynaptic element determines the postsynaptic accumulation of glycine and GABAAreceptors but not of gephyrin. ArticleCASPubMedPubMed Central Google Scholar
Taleb, O. & Betz, H. Expression of the human glycine receptor α1 subunit in Xenopus oocytes: apparent affinities of agonists increase at high receptor density. EMBO J.13, 1318 –1324 (1994). ArticleCASPubMedPubMed Central Google Scholar
Maammar, M., Rodeau, J. L. & Taleb, O. Permeation and gating of α1 glycine-gated channels expressed at low and high density in Xenopus oocyte. FEBS Lett.414, 99–104 ( 1997). ArticleCASPubMed Google Scholar
Lim, R., Alvarez, F. J. & Walmsley, B. Quantal size is correlated with receptor cluster area at glycinergic synapses in the rat brainstem. J. Physiol.516, 505–512 (1999). ArticleCASPubMedPubMed Central Google Scholar
Item, C. & Sieghart, W. Binding of γ-aminobutyric acidA receptors to tubulin. J. Neurochem.63, 1119–1125 (1994). ArticleCASPubMed Google Scholar
Kannenberg, K., Baur, R. & Sigel, E. Proteins associated with α1 subunit-containing GABAA receptors from bovine brain. J. Neurochem.68, 1352 –1360 (1997). ArticleCASPubMed Google Scholar
Triller, A., Cluzeaud, F. & Korn, H. Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. J. Cell Biol.104, 947–956 ( 1987). ArticleCASPubMed Google Scholar
Cabot, J. B., Bushnell, A., Alessi, V. & Mendell, N. R. Postsynaptic gephyrin immunoreactivity exhibits a nearly one-to-one correspondence with γ-aminobutyric acid-like immunogold-labeled synaptic inputs to sympathetic preganglionic neurons. J. Comp. Neurol.356, 418– 432 (1995). ArticleCASPubMed Google Scholar
Todd, A. J., Spike, R. C., Chong, D. & Neilson, M. The relationship between glycine and gephyrin in synapses of the rat spinal cord. Eur. J. Neurosci.7, 1–11 (1995). ArticleCASPubMed Google Scholar
Sassoe-Pognetto, M. et al. Co-localization of gephyrin and GABAA-receptor subunits in the rat retina. J. Comp. Neurol.357, 1–14 (1995). ArticleCASPubMed Google Scholar
Sassoe-Pognetto, M. & Fritschy, J. M. Mini-review: gephyrin, a major postsynaptic protein of GABAergic synapses. Eur. J. Neurosci.12, 2205–2210 (2000). ArticleCASPubMed Google Scholar
Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nature Neurosci.1, 563–571 ( 1998).Mice that lack GABAAreceptor γ2 subunits showed significant reductions of synaptic GABAAreceptors clustering in cultured cortical neurons. Blocking the expression of gephyrin isoforms using antisense oligonucleotides had similar effects. ArticleCASPubMed Google Scholar
Craig, A. M., Banker, G., Chang, W., McGrath, M. E. & Serpinskaya, A. S. Clustering of gephyrin at GABAergic but not glutamatergic synapses in cultured rat hippocampal neurons. J. Neurosci.16, 3166–3177 (1996). ArticleCASPubMedPubMed Central Google Scholar
Baer, K. et al. Postsynaptic clustering of γ-aminobutyric acid type A receptors by the γ3 subunit in vivo. Proc. Natl Acad. Sci. USA96, 12860–12865 ( 1999). ArticleCASPubMedPubMed Central Google Scholar
Fischer, F. et al. Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. J. Comp. Neurol.427, 634–648 ( 2000). ArticleCASPubMed Google Scholar
Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton . J. Neurosci.15, 4148– 4156 (1995). ArticleCASPubMedPubMed Central Google Scholar
Allison, D. W., Chervin, A. S., Gelfand, V. I. & Craig, A. M. Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J. Neurosci.20, 4545– 4554 (2000). ArticleCASPubMedPubMed Central Google Scholar
Meier, J., De Chaldee, M., Triller, A. & Vannier, C. Functional heterogeneity of gephyrins. Mol. Cell Neurosci.16, 566–577 (2000). The authors provide evidence that some of the spliced variants of gephyrin have distinct functions. Specifically, not all of the spliced variants of gephyrin can bind the glycine receptor β-subunit. Furthermore, spliced variants can also have distinct subcellular localization in neurons. ArticleCASPubMed Google Scholar
Knuesel, I. et al. Short communication: altered synaptic clustering of GABA A receptors in mice lacking dystrophin (mdx mice). Eur. J. Neurosci.11, 4457–4462 (1999). ArticleCASPubMed Google Scholar
Wang, H. B., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature397, 69–72 ( 1999). ArticleCASPubMed Google Scholar
Wang, H. & Olsen, R. W. Binding of the GABAA receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAP–GABAA receptor interaction. J. Neurochem.75, 644– 655 (2000). ArticleCASPubMed Google Scholar
Mei, X., Sweatt, A. J. & Hammarback, J. A. Regulation of microtubule-associated protein 1B (MAP1B) subunit composition. J. Neurosci. Res.62, 56–64 (2000). ArticleCASPubMed Google Scholar
Mann, S. S. & Hammarback, J. A. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J. Biol. Chem.269, 11492–11497 (1994). ArticleCASPubMed Google Scholar
Sagiv, Y., Legesse-Miller, A., Porat, A. & Elazar, Z. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J.19, 1494– 1504 (2000). ArticleCASPubMedPubMed Central Google Scholar
Legesse-Miller, A., Sagiv, Y., Glozman, R. & Elazar, Z. Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J. Biol. Chem.275, 32966– 32973 (2000). ArticleCASPubMed Google Scholar
Kneussel, M. et al. The γ-aminobutyric acid type A receptor (GABAA R)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc. Natl Acad. Sci. USA97, 8594–8599 ( 2000).The distribution and interaction of GABAA-receptor-associated protein (GABARAP) and gephyrin were compared in cultured neurons. GABARAP was found almost exclusively in intracellular compartments compared with synaptic sites where a much greater abundance of gephyrin was demonstrated. This distribution is consistent with a role for GABARAP in GABAAreceptor transport rather than synaptic anchoring. ArticleCASPubMedPubMed Central Google Scholar
Chen, L., Wang, H., Vicini, S. & Olsen, R. W. The γ-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc. Natl Acad. Sci. USA97, 11557– 11562 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hanley, J. G., Koulen, P., Bedford, F., Gordon Weeks, P. R. & Moss, S. J. The protein MAP-1B links GABA C receptors to the cytoskeleton at retinal synapses. Nature397, 66–69 ( 1999).This study showed a specific interaction between the GABACreceptor ρ1 and ρ2 subunits with the microtubule-associated protein MAP1B. Complexes of MAP1B and GABACreceptors were found in retinal bipolar neurons and facilitated the interaction of these receptors with the cytoskeleton. ArticleCASPubMed Google Scholar
Hammarback, J. A. in Brain Microtubule Associated Proteins: Modifications in Disease (eds Avila, J., Kosik, K. & Brandt, R.) 1–17 (Harwood, Amsterdam, 2001). Google Scholar
Billups, D., Hanley, J. G., Orme, M., Attwell, D. & Moss, S. J. GABAC receptor sensitivity is modulated by interaction with MAP1B. J. Neurosci.20, 8643–8650 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hanley, J. G., Jones, E. M. & Moss, S. J. GABA receptor rho1 subunit interacts with a novel splice variant of the glycine transporter, GLYT-1. J. Biol. Chem.275, 840–846 ( 2000). ArticleCASPubMed Google Scholar
Connolly, C. N. et al. Cell surface stability of γ-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition . J. Biol. Chem.274, 36565– 36572 (1999). ArticleCASPubMed Google Scholar
Chapell, R., Bueno, O. F., Alvarez-Hernandez, X., Robinson, L. C. & Leidenheimer, N. J. Activation of protein kinase C induces γ-aminobutyric acid type A receptor internalization in Xenopus oocytes. J. Biol. Chem.273, 32595–32601 (1998). ArticleCASPubMed Google Scholar
Ghansah, E. & Weiss, D. S. Modulation of GABAA receptors by benzodiazepines and barbiturates is autonomous of PKC activation . Neuropharmacology40, 327– 333 (2001). ArticleCASPubMed Google Scholar
Filippova, N., Sedelnikova, A., Zong, Y., Fortinberry, H. & Weiss, D. S. Regulation of recombinant γ-aminobutyric acid (GABAA and GABAC) receptors by protein kinase C . Mol. Pharmacol.57, 847– 856 (2000). CASPubMed Google Scholar
Kittler, J. T. et al. Analysis of GABAA receptor assembly in mammalian cell lines and hippocampal neurons using γ2 subunit green fluorescent protein chimeras. Mol. Cell. Neurosci.16, 440–452 (2000). ArticleCASPubMed Google Scholar
Kittler, J. T. et al. Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci.20, 7972–7977 (2000). Interactions between β1–3 and γ2 GABAAreceptor subunits and the adaptin AP2 complex were found in hippocampal neurons. Blocking this interaction caused a large time-dependent increase in the amplitude of miniature inhibitory postsynaptic current, suggesting that synaptic GABAAreceptors undergo constitutive endocytosis. ArticleCASPubMedPubMed Central Google Scholar
Meyer, T. & Shen, K. In and out of the postsynaptic region: signalling proteins on the move. Trends Cell Biol.10, 238–244 (2000). ArticleCASPubMed Google Scholar
Wan, Q. et al. Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature388, 686– 690 (1997).The effect of insulin treatment of recombinant and native GABAAreceptors was evaluated. Insulin promoted increased cell-surface expression of GABAAreceptors in both HEK cells and in cultured hippocampal neurons. The amplitudes of miniature inhibitory postsynaptic currents were also increased by insulin without affecting their kinetics. ArticleCASPubMed Google Scholar
Moss, S. J. & Smart, T. G. Modulation of amino acid-gated ion channels by protein phosphorylation. Int. Rev. Neurobiol.39, 1–52 (1996). ArticleCASPubMed Google Scholar
Smart, T. G. Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr. Opin. Neurobiol.7, 358–367 (1997). ArticleCASPubMed Google Scholar
McDonald, B. J. et al. Adjacent phosphorylation sites on GABAA receptor β subunits determine regulation by cAMP-dependent protein kinase. Nature Neurosci.1, 23–28 (1998). ArticleCASPubMed Google Scholar
Moss, S. J., Doherty, C. A. & Huganir, R. L. Identification of the cAMP-dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of the β1, γ2S, and γ 2L subunits of the γ-aminobutyric acid type A receptor. J. Biol. Chem.267, 14470–14476 (1992). ArticleCASPubMed Google Scholar
Moss, S. J., Smart, T. G., Blackstone, C. D. & Huganir, R. L. Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science257, 661– 665 (1992). ArticleCASPubMed Google Scholar
McDonald, B. J. & Moss, S. J. Differential phosphorylation of intracellular domains of γ-aminobutyric acid type A receptor subunits by calcium/calmodulin type 2-dependent protein kinase and cGMP-dependent protein kinase. J. Biol. Chem.269, 18111– 18117 (1994). ArticleCASPubMed Google Scholar
McDonald, B. J. & Moss, S. J. Conserved phosphorylation of the intracellular domains of GABAA receptor β2 and β3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase protein kinase C and Ca2+/calmodulin type II-dependent protein kinase . Neuropharmacology36, 1377– 1385 (1997). ArticleCASPubMed Google Scholar
Brandon, N. J. et al. Subunit-specific association of protein kinase C and the receptor for activated C kinase with GABA type A receptors. J. Neurosci.19, 9228–9234 ( 1999).Using affinity purification and gel-overlay assays, a specific association of PKC and RACK1 with β1–3 GABAAreceptor subunits was observed. Both proteins bind independently but directly to the β-subunit intracellular domains. Immunoprecipitation showed that both PKC and RACK1 are intimately associated with native GABAAreceptors in neurons. ArticleCASPubMedPubMed Central Google Scholar
Mochly-Rosen, D. & Gordon, A. S. Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J.12, 35–42 ( 1998). ArticleCASPubMed Google Scholar
Chang, B. Y., Conroy, K. B., Machleder, E. M. & Cartwright, C. A. RACK1, a receptor for activated C kinase and a homolog of the β subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol. Cell. Biol.18, 3245– 3256 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yarwood, S. J., Steele, M. R., Scotland, G., Houslay, M. D. & Bolger, G. B. The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform . J. Biol. Chem.274, 14909– 14917 (1999). ArticleCASPubMed Google Scholar
Brandon, N. J. et al. GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J. Biol. Chem.275, 38856–38862 (2000). ArticleCASPubMed Google Scholar
Smart, T. G., Thomas, P., Brandon, N. J. & Moss, S. J. in Pharmacology of GABA and Glycine Neurotransmission (ed. Mohler, H.) 195–225 (Springer–Verlag, Berlin, 2001). Book Google Scholar
Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in synapse assembly and signalling. Trends Cell Biol.10, 274–280 (2000). ArticleCASPubMed Google Scholar
Ye, B. et al. GRASP-1: a neuronal RasGEF associated with the AMPA receptor/GRIP complex. Neuron26, 603– 617 (2000). ArticleCASPubMed Google Scholar
Kim, J. H., Liao, D., Lau, L. F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron20, 683–691 ( 1998). ArticleCASPubMed Google Scholar
Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron23, 365–376 (1999). ArticleCASPubMed Google Scholar
Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron21, 87–97 ( 1998). ArticleCASPubMed Google Scholar
Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nature Neurosci.3, 661–669 (2000). ArticleCASPubMed Google Scholar