Autoreactivity by design: innate B and T lymphocytes (original) (raw)
Medzhitov, R. & Janeway, C. A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell91, 295–298 (1997). ArticleCASPubMed Google Scholar
Benlagha, K. & Bendelac, A. CD1d-restricted mouse Vα14 and human Vα24 T cells: lymphocytes of innate immunity. Semin. Immunol.12, 537–542 (2000). CASPubMed Google Scholar
Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science285, 113–116 (1999).The first demonstration that self-antigen drives the selection of innate lymphocytes. CASPubMed Google Scholar
Briles, D. E. et al. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 streptococcus pneumoniae. J. Exp. Med.153, 694–705 (1981).The first demonstration that innate lymphocytes confer natural protection against infection. CASPubMed Google Scholar
Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest.105, 1731–1740 (2000). CASPubMedPubMed Central Google Scholar
Martin, F. & Kearney, J. F. B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a 'natural immune memory'. Immunol. Rev.175, 70–79 (2000). CASPubMed Google Scholar
Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science268, 863–865 (1995). CASPubMed Google Scholar
Smiley, S. T., Kaplan, M. H. & Grusby, M. J. Immunoglobulin E production in the absence of interleukin-4 secreting CD1-dependent cells. Science275, 977–979 (1997). CASPubMed Google Scholar
Park, S. H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med.193, 893–904 (2001).The intriguing demonstration that most of the mouse CD1d-restricted T-cell receptor repertoire is innate rather than adaptive. CASPubMedPubMed Central Google Scholar
Chiu, Y. H. et al. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med.189, 103–110 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kawano, T. et al. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science278, 1626–1629 (1997). ArticleCASPubMed Google Scholar
Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science279, 1737–1740 (1998). CASPubMed Google Scholar
Spada, F. M. et al. Self-recognition of CD1 by γ/δ T cells: implications for innate immunity. J. Exp. Med.191, 937–948 (2000). CASPubMedPubMed Central Google Scholar
Crowley, M. P. et al. A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science287, 314–316 (2000). CASPubMed Google Scholar
Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285, 727–729 (1999). CASPubMed Google Scholar
Mercolino, T. J., Arnold, L. W., Hawkins, L. A. & Haughton, G. Normal mouse peritoneum contains a large population of Ly-1+ (CD5) B cells that recognize phosphatidylcholine. Relationship to cells that secrete hemolytic antibody specific for autologous erythrocytes. J. Exp. Med.168, 687–698 (1988). CASPubMed Google Scholar
Hardy, R. R., Carmack, C. E., Shinton, S. A., Riblet, R. J. & Hayakawa, K. A single VH gene is utilized predominantly in anti-BrMRBC hybridomas derived from purified Ly-1 B cells. Definition of the VH11 family. J. Immunol.142, 3643–3651 (1989). CASPubMed Google Scholar
Constant, P. et al. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science264, 267–270 (1994). CASPubMed Google Scholar
Fournie, J. J. & Bonneville, M. Stimulation of γδ T cells by phosphoantigens. Res. Immunol.147, 338–347 (1996). CASPubMed Google Scholar
Allison, T. J., Winter, C. C., Fournie, J. J., Bonneville, M. & Garboczi, D. N. Structure of a human γδ TCR. Nature411, 820–824 (2001). CASPubMed Google Scholar
Lang, F. et al. Early activation of human Vγ9Vδ2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands. J. Immunol.154, 5986–5994 (1995). CASPubMed Google Scholar
Morita, C. T. et al. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity3, 495–507 (1995). CASPubMed Google Scholar
Havran, W. L. A role for epithelial γδ T cells in tissue repair. Immunol. Res.21, 63–69 (2000). CASPubMed Google Scholar
Havran, W. L., Chien, Y. H. & Allison, J. P. Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science252, 1430–1432 (1991). CASPubMed Google Scholar
Mukasa, A., Lahn, M., Pflum, E. K., Born, W. & O' Brien, R. L. Evidence that the same γδ T cells respond during infection-induced and autoimmune inflammation. J. Immunol.159, 5787–5794 (1997). CASPubMed Google Scholar
Allison, J. P. & Havran, W. L. The immunobiology of T cells with invariant γδ antigen receptors. Annu. Rev. Immunol.9, 679–705 (1991). CASPubMed Google Scholar
Mallick-Wood, C. A. et al. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science279, 1729–1733 (1998). CASPubMed Google Scholar
Watanabe, N. et al. Migration and differentiation of autoreactive B-1 cells induced by activated γ/δ T cells in antierythrocyte immunoglobulin transgenic mice. J. Exp. Med.192, 1577–1586 (2000). CASPubMedPubMed Central Google Scholar
Haas, W., Pereira, P. & Tonegawa, S. γ/δ cells. Annu. Rev. Immunol.11, 637–685 (1993). CASPubMed Google Scholar
Hayday, A. C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol.18, 975–1026 (2000).An up-to-date authoritative review on γδ T cells. CASPubMed Google Scholar
Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science266, 1253–1255 (1994).A demonstration of the crosstalk between tissues and their resident lymphocytes. CASPubMed Google Scholar
Azuara, V., Levraud, J. P., Lembezat, M. P. & Pereira, P. A novel subset of adult γδ thymocytes that secretes a distinct pattern of cytokines and expresses a very restricted T cell receptor repertoire. Eur. J. Immunol.27, 544–553 (1997). CASPubMed Google Scholar
Brown, M. G., Scalzo, A. A., Matsumoto, K. & Yokoyama, W. M. The natural killer gene complex: a genetic basis for understanding natural killer cell function and innate immunity. Immunol. Rev.155, 53–65 (1997). CASPubMed Google Scholar
Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol.1, 119–126 (2000). CAS Google Scholar
Halary, F. et al. Control of self-reactive cytotoxic T lymphocytes expressing γδ T cell receptors by natural killer inhibitory receptors. Eur. J. Immunol.27, 2812–2821 (1997).A demonstration that inhibitory receptors control autoreactive T-cell receptors. CASPubMed Google Scholar
Ikarashi, Y. et al. Dendritic cell maturation overrules H-2D-mediated natural killer T (NKT) cell inhibition. Critical role for b7 in CD1d-dependent NKT cell interferon γ production. J. Exp. Med.194, 1179–1186 (2001). CASPubMedPubMed Central Google Scholar
Exley, M., Porcelli, S., Furman, M., Garcia, J. & Balk, S. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant Vα24JαQ T cell receptor α chains. J. Exp. Med.188, 867–876 (1998). CASPubMedPubMed Central Google Scholar
Schuhmachers, G. et al. 2B4, a new member of the immunoglobulin gene superfamily, is expressed on murine dendritic epidermal T cells and plays a functional role in their killing of skin tumors. J. Invest. Dermatol.105, 592–596 (1995). CASPubMed Google Scholar
Girardi, M. et al. Regulation of cutaneous maligancy by γδ T cells. Science294, 605–609 (2001). CASPubMed Google Scholar
Bikah, G., Carey, J., Ciallella, J. R., Tarakhovsky, A. & Bondada, S. CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science274, 1906–1909 (1996). CASPubMed Google Scholar
Sen, G., Bikah, G., Venkataraman, C. & Bondada, S. Negative regulation of antigen receptor-mediated signaling by constitutive association of CD5 with the SHP-1 protein tyrosine phosphatase in B-1 B cells. Eur. J. Immunol.29, 3319–3328 (1999). CASPubMed Google Scholar
Reap, E. A., Sobel, E. S., Cohen, P. L. & Eisenberg, R. A. Conventional B cells, not B-1 cells, are responsible for producing autoantibodies in lpr mice. J. Exp. Med.177, 69–78 (1993). CASPubMed Google Scholar
Wither, J. E., Roy, V. & Brennan, L. A. Activated B cells express increased levels of costimulatory molecules in young autoimmune NZB and (NZB × NZW)F1 mice. Clin. Immunol.94, 51–63 (2000). CASPubMed Google Scholar
Paciorkowski, N., Porte, P., Shultz, L. D. & Rajan, T. V. B1 B lymphocytes play a critical role in host protection against lymphatic filarial parasites. J. Exp. Med.191, 731–736 (2000). CASPubMedPubMed Central Google Scholar
Rosen, A. & Casciola-Rosen, L. Clearing the way to mechanisms of autoimmunity. Nature Med.7, 664–665 (2001). CASPubMed Google Scholar
Forster, I. & Rajewsky, K. Expansion and functional activity of Ly-1+ B cells upon transfer of peritoneal cells into allotype-congenic, newborn miceM. Eur. J. Immunol.17, 521–528 (1987). CASPubMed Google Scholar
Ochsenbein, A. F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science286, 2156–2159 (1999). CASPubMed Google Scholar
Weiser, M. R. et al. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J. Exp. Med.183, 2343–2348 (1996). CASPubMed Google Scholar
King, D. P. et al. Cutting edge: protective response to pulmonary injury requires γδ T lymphocytes. J. Immunol.162, 5033–5036 (1999). CASPubMed Google Scholar
D'Souza, C. D. et al. An anti-inflammatory role for γδ T lymphocytes in acquired immunity to Mycobacterium tuberculosis. J. Immunol.158, 1217–1221 (1997). CASPubMed Google Scholar
Gombert, J. M. et al. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol.26, 2989–2998 (1996). CASPubMed Google Scholar
Wilson, S. B. et al. Extreme TH1 bias of invariant Vα24JαQ T cells in type I diabetes. Nature391, 177–181 (1998). CASPubMed Google Scholar
Shi, F. D. et al. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc. Natl Acad. Sci. USA98, 6777–6782 (2001). CASPubMedPubMed Central Google Scholar
Hammond, K. J. L. et al. α/β-T cell receptor (TCR)+CD4−CD8− (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med.187, 1047–1056 (1998). CASPubMedPubMed Central Google Scholar
Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14-Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med.188, 1831–1839 (1998). CASPubMedPubMed Central Google Scholar
Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med191, 661–668 (2000). CASPubMedPubMed Central Google Scholar
Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunol.1, 515–520 (2000). CAS Google Scholar
Dieli, F. et al. Resistance of natural killer T cell-deficient mice to systemic Shwartzman reaction. J. Exp. Med.192, 1645–1652 (2000). CASPubMedPubMed Central Google Scholar
Carnaud, C. et al. Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol.163, 4647–4650 (1999). CASPubMed Google Scholar
Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med.189, 1121–1128 (1999). CASPubMedPubMed Central Google Scholar
Park, S. H. & Bendelac, A. CD1-restricted T-cell responses and microbial infection. Nature406, 788–792 (2000). CASPubMed Google Scholar
Havran, W. L. & Allison, J. P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature335, 443–445 (1988). CASPubMed Google Scholar
Zhang, Y. et al. The role of short homology repeats and TdT in generation of the invariant γδ antigen receptor repertoire in the fetal thymus. Immunity3, 439–447 (1995).Genetic dissection of the making of a canonical T-cell receptor. CASPubMed Google Scholar
Itohara, S. et al. T cell receptor δ gene mutant mice: independent generation of αβ T cells and programmed rearrangements of γδ TCR genes. Cell72, 337–348 (1993). CASPubMed Google Scholar
Benedict, C. L. & Kearney, J. F. Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. Immunity10, 607–617 (1999).Genetic dissection of the making of a canonical B-cell receptor. CASPubMed Google Scholar
Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of MHC class I-specific CD4+ and CD4−8− T cells in mice and humans. J. Exp. Med.180, 1097–1106 (1994). CASPubMed Google Scholar
Shimamura, M., Ohteki, T., Beutner, U. & MacDonald, H. R. Lack of directed Vα14-Jα281 rearrangements in NK1+ T cells. Eur. J. Immunol.27, 1576–1579 (1997). CASPubMed Google Scholar
McVay, L. D. & Carding, S. R. Extrathymic origin of human γδ T cells during fetal development. J. Immunol.157, 2873–2882 (1996). CASPubMed Google Scholar
Parker, C. M. et al. Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J. Exp. Med.171, 1597–1612 (1990). CASPubMed Google Scholar
Davodeau, F. et al. Peripheral selection of antigen receptor junctional features in a major human γδ subset. Eur. J. Immunol.23, 804–808 (1993). CASPubMed Google Scholar
Tatu, C., Ye, J., Arnold, L. W. & Clarke, S. H. Selection at multiple checkpoints focuses V(H)12 B cell differentiation toward a single B-1 cell specificity. J. Exp. Med.190, 903–914 (1999). CASPubMedPubMed Central Google Scholar
Lam, K. P. & Rajewsky, K. B cell antigen receptor specificity and surface density together determine B-1 versus B-2 cell development. J. Exp. Med.190, 471–477 (1999). CASPubMedPubMed Central Google Scholar
Chumley, M. J. et al. A VH11Vκ9 B cell antigen receptor drives generation of CD5+ B cells both in vivo and in vitro. J. Immunol.164, 4586–4593 (2000). CASPubMed Google Scholar
Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD 19, and btk. Immunity12, 39–49 (2000).A demonstration that specificity and avidity for self-antigen control the differentiation of innate lymphocytes. CASPubMed Google Scholar
Gerber, D. J. et al. IL-4-producing γδ T cells that express a very restricted TCR repertoire are preferentially localized in liver and spleen. J. Immunol.163, 3076–3082 (1999). CASPubMed Google Scholar
Bendelac, A., Hunziker, R. D. & Lantz, O. Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J. Exp. Med.184, 1285–1293 (1996). CASPubMed Google Scholar
Skold, M., Faizunnessa, N. N., Wang, C. R. & Cardell, S. CD1d-specific NK1.1+ T cells with a transgenic variant TCR. J. Immunol.165, 168–174 (2000). CASPubMed Google Scholar
Bonneville, M. et al. Transgenic mice demonstrate that epithelial homing of γ/δ T cells is determined by cell lineages independent of T cell receptor specificity. J. Exp. Med.171, 1015–1026 (1990). CASPubMed Google Scholar
Watanabe, N. et al. Expression levels of B cell surface immunoglobulin regulate efficiency of allelic exclusion and size of autoreactive B-1 cell compartment. J. Exp. Med.190, 461–469 (1999). CASPubMedPubMed Central Google Scholar
Kouskoff, V., Lacaud, G., Pape, K., Retter, M. & Nemazee, D. B cell receptor expression level determines the fate of developing B lymphocytes: receptor editing versus selection. Proc. Natl Acad. Sci. USA97, 7435–7439 (2000). CASPubMedPubMed Central Google Scholar
Kenny, J. J. et al. Autoreactive B cells escape clonal deletion by expressing multiple antigen receptors. J. Immunol.164, 4111–4119 (2000). CASPubMed Google Scholar
Bendelac, A., Killeen, N., Littman, D. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science263, 1774–1778 (1994). CASPubMed Google Scholar
Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med.191, 771–780 (2000). CASPubMedPubMed Central Google Scholar
Cyster, J. G. & Goodnow, C. C. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity2, 13–24 (1995). CASPubMed Google Scholar
Hayakawa, K. & Hardy, R. R. Development and function of B-1 cells. Curr. Opin. Immunol.12, 346–353 (2000). CASPubMed Google Scholar
Murakami, M. et al. Effects of breeding environments on generation and activation of autoreactive B-1 cells in anti-red blood cell autoantibody transgenic mice. J. Exp. Med.185, 791–794 (1997). CASPubMedPubMed Central Google Scholar
Legendre, V. et al. Selection of phenotypically distinct NK1.1+ T cells upon antigen expression in the thymus or in the liver. Eur. J. Immunol.29, 2330–2343 (1999). CASPubMed Google Scholar
Schultz, R. J., Parkes, A., Mizoguchi, E., Bhan, A. K. & Koyasu, S. Development of CD4−CD8− αβTCR+ NK1.1+ T lymphocytes. Thymic selection by self antigen. J. Immunol.157, 4379–4389 (1996). Google Scholar
Galili, U. Evolution and pathophysiology of the human natural anti-α-galactosyl IgG (anti-Gal) antibody. Springer Semin. Immunopathol.15, 155–171 (1993). CASPubMed Google Scholar
Liu, Y. J., Oldfield, S. & MacLennan, I. C. Memory B cells in T cell-dependent antibody responses colonize the splenic marginal zones. Eur. J. Immunol.18, 355–362 (1988). CASPubMed Google Scholar
MacLennan, I. C. & Gray, D. Antigen-driven selection of virgin and memory B cells. Immunol. Rev.91, 61–85 (1986). CASPubMed Google Scholar
Litman, G. W. et al. Immunoglobulin VH gene structure and diversity in Heterodontus, a phylogenetically primitive shark. Proc. Natl Acad. Sci. USA82, 2082–2086 (1985). CASPubMedPubMed Central Google Scholar
Matzinger, P. Tolerance, danger and the extended family. Annu. Rev. Immunol.12, 991–1045 (1994).A general model of immunity based on the assumption that sensing tissue stress and damage governs the decision between immunological tolerance versus responsiveness. CASPubMed Google Scholar
Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med.5, 1249–1255 (1999).A demonstration that necrotic, but not apoptotic, cell death activates the immune system. CASPubMed Google Scholar
Singh, N. et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a TH2 phenotype. J. Immunol.163, 2373–2377 (1999). CASPubMed Google Scholar
Kakimi, K., Guidotti, L. G., Koezuka, Y. & Chisari, F. V. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med.192, 921–930 (2000). CASPubMedPubMed Central Google Scholar
Gonzalez-Aseguinolaza, G. et al. α-galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria. Proc. Natl Acad. Sci. USA97, 8461–8466 (2000). CASPubMedPubMed Central Google Scholar
Toura, I. et al. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J. Immunol.163, 2387–2391 (1999). CASPubMed Google Scholar
Hong, S. et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med.7, 1052–1056 (2001). CASPubMed Google Scholar
Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nature Med.7, 1057–1062 (2001). CASPubMed Google Scholar
Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature413, 531–534 (2001). CASPubMed Google Scholar