RETRACTED ARTICLE: APP binds DR6 to trigger axon pruning and neuron death via distinct caspases (original) (raw)
Raff, M. C., Whitmore, A. V. & Finn, J. T. Axonal self-destruction and neurodegeneration. Science296, 868–871 (2002) ArticleADSCASPubMed Google Scholar
Luo, L. & O’Leary, D. D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci.28, 127–156 (2005) ArticleCASPubMed Google Scholar
Buss, R. R., Sun, W. & Oppenheim, R. W. Adaptive roles of programmed cell death during nervous system development. Annu. Rev. Neurosci.29, 1–35 (2006) ArticleCASPubMed Google Scholar
Saxena, S. & Caroni, P. Mechanisms of axon degeneration: from development to disease. Prog. Neurobiol.83, 174–191 (2007) ArticleCASPubMed Google Scholar
Haase, G., Pettmann, B., Raoul, C. & Henderson, C. E. Signaling by death receptors in the nervous system. Curr. Opin. Neurobiol.18, 284–291 (2008) ArticleCASPubMedPubMed Central Google Scholar
Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature384, 368–372 (1996) ArticleADSCASPubMed Google Scholar
White, F. A., Keller-Peck, C. R., Knudson, C. M., Korsmeyer, S. J. & Snider, W. D. Widespread elimination of naturally occurring neuronal death in _Bax_-deficient mice. J. Neurosci.18, 1428–1439 (1998) ArticleCASPubMedPubMed Central Google Scholar
Finn, J. T. et al. Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases. J. Neurosci.20, 1333–1341 (2000) ArticleCASPubMedPubMed Central Google Scholar
Kuo, C. T., Zhu, S., Younger, S., Jan, L. Y. & Jan, Y. N. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron51, 283–290 (2006) ArticleCASPubMed Google Scholar
Williams, D. W., Kondo, S., Krzyzanowska, A., Hiromi, Y. & Truman, J. W. Local caspase activity directs engulfment of dendrites during pruning. Nature Neurosci.9, 1234–1236 (2006) ArticleCASPubMed Google Scholar
Plachta, N. et al. Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nature Neurosci.10, 712–719 (2007) ArticleCASPubMed Google Scholar
Sagot, Y. et al. Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J. Neurosci.15, 7727–7733 (1995) ArticleCASPubMedPubMed Central Google Scholar
Watts, R. J., Hoopfer, E. D. & Luo, L. Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron38, 871–885 (2003) ArticleCASPubMed Google Scholar
Bodmer, J. L., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci.27, 19–26 (2002) ArticleCASPubMed Google Scholar
Bossen, C. et al. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J. Biol. Chem.281, 13964–13971 (2006) ArticleCASPubMed Google Scholar
Pan, G. et al. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett.431, 351–356 (1998) ArticleCASPubMed Google Scholar
Zhao, H. et al. Impaired c-Jun amino terminal kinase activity and T cell differentiation in death receptor 6-deficient mice. J. Exp. Med.194, 1441–1448 (2001) ArticleCASPubMedPubMed Central Google Scholar
Schmidt, C. S. et al. Enhanced B cell expansion, survival, and humoral responses by targeting death receptor 6. J. Exp. Med.197, 51–62 (2003) ArticleCASPubMedPubMed Central Google Scholar
Walsh, D. M. et al. The APP family of proteins: similarities and differences. Biochem. Soc. Trans.35, 416–420 (2007) ArticleCASPubMed Google Scholar
Reinhard, C., Hebert, S. S. & De Strooper, B. The amyloid-β precursor protein: integrating structure with biological function. EMBO J.24, 3996–4006 (2005) ArticleCASPubMedPubMed Central Google Scholar
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002) ArticleADSCASPubMed Google Scholar
Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nature Rev. Mol. Cell Biol.8, 101–112 (2007) ArticleCAS Google Scholar
Wang, H. & Tessier-Lavigne, M. En passant neurotrophic action of an intermediate axonal target in the developing mammalian CNS. Nature401, 765–769 (1999) ArticleADSCASPubMed Google Scholar
Campenot, R. B., Walji, A. H. & Draker, D. D. Effects of sphingosine, staurosporine, and phorbol ester on neurites of rat sympathetic neurons growing in compartmented cultures. J. Neurosci.11, 1126–1139 (1991) ArticleCASPubMedPubMed Central Google Scholar
Cole, S. L. & Vassar, R. BACE1 structure and function in health and Alzheimer’s disease. Curr. Alzheimer Res.5, 100–120 (2008) ArticleCASPubMed Google Scholar
Edwards, P. D. et al. Application of fragment-based lead generation to the discovery of novel, cyclic amidine β-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J. Med. Chem.50, 5912–5925 (2007) ArticleCASPubMed Google Scholar
Slunt, H. H. et al. Expression of a ubiquitous, cross-reactive homologue of the mouse β-amyloid precursor protein (APP). J. Biol. Chem.269, 2637–2644 (1994) ArticleCASPubMed Google Scholar
Hilbich, C., Monning, U., Grund, C., Masters, C. L. & Beyreuther, K. Amyloid-like properties of peptides flanking the epitope of amyloid precursor protein-specific monoclonal antibody 22C11. J. Biol. Chem.268, 26571–26577 (1993) ArticleCASPubMed Google Scholar
Wang, P. et al. Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-like protein 2. J. Neurosci.25, 1219–1225 (2005) ArticleCASPubMedPubMed Central Google Scholar
Singh, K. K. et al. Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nature Neurosci.11, 649–658 (2008) ArticleCASPubMed Google Scholar
LeBlanc, A., Liu, H., Goodyer, C., Bergeron, C. & Hammond, J. Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer’s disease. J. Biol. Chem.274, 23426–23436 (1999) ArticleCASPubMed Google Scholar
Horowitz, P. M. et al. Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. J. Neurosci.24, 7895–7902 (2004) ArticleCASPubMedPubMed Central Google Scholar
Guo, H. et al. Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am. J. Pathol.165, 523–531 (2004) ArticleCASPubMedPubMed Central Google Scholar
Klaiman, G., Petzke, T. L., Hammond, J. & Leblanc, A. C. Targets of caspase-6 activity in human neurons and Alzheimer disease. Mol. Cell. Proteomics7, 1541–1555 (2008) ArticleCASPubMedPubMed Central Google Scholar
Young-Pearse, T. L., Chen, A. C., Chang, R., Marquez, C. & Selkoe, D. J. Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin β1. Neural Develop.3, 15 (2008) ArticlePubMed Central Google Scholar
Heber, S. et al. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci.20, 7951–7963 (2000) ArticleCASPubMedPubMed Central Google Scholar
Perez, R. G., Zheng, H., Van der Ploeg, L. H. & Koo, E. H. The β-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J. Neurosci.17, 9407–9414 (1997) ArticleCASPubMedPubMed Central Google Scholar
Han, P. et al. Suppression of cyclin-dependent kinase 5 activation by amyloid precursor protein: a novel excitoprotective mechanism involving modulation of Tau phosphorylation. J. Neurosci.25, 11542–11552 (2005) ArticleCASPubMedPubMed Central Google Scholar
Matrone, C. et al. Activation of the amyloidogenic route by NGF deprivation induces apoptotic death in PC12 cells. J. Alzheimers Dis.13, 81–96 (2008) ArticleCASPubMed Google Scholar
Matrone, C., Ciotti, M. T., Mercanti, D., Marolda, R. & Calissano, P. NGF and BDNF signaling control amyloidogenic route and Aβ production in hippocampal neurons. Proc. Natl Acad. Sci. USA105, 13139–13144 (2008) ArticleADSCASPubMedPubMed Central Google Scholar
Medana, I. M. & Esiri, M. M. Axonal damage: a key predictor of outcome in human CNS diseases. Brain126, 515–530 (2003) ArticleCASPubMed Google Scholar
Chiang, L. W. et al. An orchestrated gene expression component of neuronal programmed cell death revealed by cDNA array analysis. Proc. Natl Acad. Sci. USA98, 2814–2819 (2001) ArticleADSCASPubMedPubMed Central Google Scholar
Muller, T., Meyer, H. E., Egensperger, R. & Marcus, K. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer’s disease. Prog. Neurobiol.85, 393–406 (2008) ArticlePubMed Google Scholar
Van Gool, D., De Strooper, B., Van Leuven, F. & Dom, R. Amyloid precursor protein accumulation in Lewy body dementia and Alzheimer’s disease. Dementia6, 63–68 (1995) CASPubMed Google Scholar
Palmert, M. R. et al. Antisera to an amino-terminal peptide detect the amyloid protein precursor of Alzheimer’s disease and recognize senile plaques. Biochem. Biophys. Res. Commun.156, 432–437 (1988) ArticleCASPubMed Google Scholar
Bertram, L. & Tanzi, R. E. Alzheimer’s disease: one disorder, too many genes? Hum. Mol. Genet.13, R135–R141 (2004) ArticleCASPubMed Google Scholar
Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell135, 749–762 (2008) ArticleCASPubMedPubMed Central Google Scholar
Graham, R. K. et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell125, 1179–1191 (2006) ArticleCASPubMed Google Scholar
Sabatier, C. et al. The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell117, 157–169 (2004) ArticleCASPubMed Google Scholar
Atwal, J. K. et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science322, 967–970 (2008) ArticleADSCASPubMed Google Scholar
Chen, Z. et al. Alternative splicing of the Robo3 axon guidance Receptor governs the midline switch. Neuron58, 325–332 (2008) ArticleCASPubMed Google Scholar
Higuchi, H., Yamashita, T., Yoshikawa, H. & Tohyama, M. Functional inhibition of the p75 receptor using a small interfering RNA. Biochem. Biophys. Res. Commun.301, 804–809 (2003) ArticleCASPubMed Google Scholar
McLaughlin, T., Torborg, C. L., Feller, M. B. & O’Leary, D. D. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron40, 1147–1160 (2003) ArticleCASPubMed Google Scholar
Pettmann, B. et al. Biological activities of nerve growth factor bound to nitrocellulose paper by western blotting. J. Neurosci.8, 3624–3632 (1988) ArticleCASPubMedPubMed Central Google Scholar
Okada, A. et al. Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature444, 369–373 (2006) ArticleADSCASPubMed Google Scholar
Knudson, C. M. et al. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science270, 96–99 (1995) ArticleADSCASPubMed Google Scholar
Lee, K. F. et al. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell69, 737–749 (1992) ArticleCASPubMed Google Scholar