Nuclear export dynamics of RNA–protein complexes (original) (raw)
Franke, W. W. & Scheer, U. The ultrastructure of the nuclear envelope of amphibian oocytes: a reinvestigation J. Ultrastruct. Res.30, 288–316 (1970). CASPubMed Google Scholar
Walde, S. & Kehlenbach, R. H. The Part and the Whole: functions of nucleoporins in nucleocytoplasmic transport. Trends Cell Biol.20, 461–469 (2010). PubMed Google Scholar
Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem.67, 265–306 (1998). CASPubMed Google Scholar
Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic6, 187–198 (2005). CASPubMed Google Scholar
Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature450, 695–701 (2007). This study describes an approach to combine different experimental data into a common framework with a defined error, underlining the essential features of NPC architecture. ADSCASPubMed Google Scholar
Strawn, L. A., Shen, T. X., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol.6, 197–206 (2004). CASPubMed Google Scholar
Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature457, 1023–1027 (2009). ADSCASPubMed Google Scholar
Ris, H. & Malecki, M. High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: a new approach to correlative ultrastructural and immunocytochemical studies. J. Struct. Biol.111, 148–157 (1993). CASPubMed Google Scholar
Kiseleva, E. et al. Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J. Struct. Biol.145, 272–288 (2004). CASPubMed Google Scholar
Kubitscheck, U. et al. Nuclear transport of single molecules: dwell times at the nuclear pore complex. J. Cell Biol.168, 233–243 (2005). PubMedPubMed Central Google Scholar
Grünwald, D. & Singer, R. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature467, 604–607 (2010). This is the first study to follow a single mRNA in detail through the NPC, showing that overall transport times are fast, ∼hundreds of milliseconds, and that docking and release are visible kinetic steps. ADSPubMedPubMed Central Google Scholar
Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol.15, 607–660 (1999). CASPubMed Google Scholar
Paine, P. L., Moore, L. C. & Horowitz, S. B. Nuclear envelope permeability. Nature254, 109–114 (1975). ADSCASPubMed Google Scholar
Mohr, D., Frey, S., Fischer, T., Guttler, T. & Gorlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J.28, 2541–2553 (2009). CASPubMedPubMed Central Google Scholar
Wente, S. R. & Rout, M. P. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol.2, a000562 (2010). CASPubMedPubMed Central Google Scholar
Timney, B. L. et al. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo . J. Cell Biol.175, 579–593 (2006). CASPubMedPubMed Central Google Scholar
Dange, T., Grünwald, D., Grünwald, A., Peters, R. & Kubitscheck, U. Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J. Cell Biol.183, 77–86 (2008). CASPubMedPubMed Central Google Scholar
Nachury, M. V. & Weis, K. The direction of transport through the nuclear pore can be inverted. Proc. Natl Acad. Sci. USA96, 9622–9627 (1999). ADSCASPubMedPubMed Central Google Scholar
Kopito, R. B. & Elbaum, M. Reversibility in nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA104, 12743–12748 (2007). ADSCASPubMedPubMed Central Google Scholar
Terry, L. J. & Wente, S. R. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot. Cell8, 1814–1827 (2009). CASPubMedPubMed Central Google Scholar
Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA100, 2450–2455 (2003). ADSCASPubMedPubMed Central Google Scholar
Lim, R. Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science318, 640–643 (2007). ADSCASPubMed Google Scholar
Frey, S., Richter, R. P. & Gorlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science314, 815–817 (2006). ADSCASPubMed Google Scholar
Frey, S. & Gorlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell130, 512–523 (2007). CASPubMed Google Scholar
Eisele, N. B., Frey, S., Piehler, J., Gorlich, D. & Richter, R. P. Ultrathin nucleoporin phenylalanine–glycine repeat films and their interaction with nuclear transport receptors. EMBO Rep.11, 366–372 (2010). CASPubMedPubMed Central Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000). CASPubMedPubMed Central Google Scholar
Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol.13, 622–628 (2003). CASPubMed Google Scholar
Peters, R. The nanopore connection to cell membrane unitary permeability. Traffic6, 199–204 (2005). CASPubMed Google Scholar
Yamada, J. et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol. Cell. Proteomics9, 2205–2224 (2010). CASPubMedPubMed Central Google Scholar
Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA103, 9512–9517 (2006). ADSCASPubMedPubMed Central Google Scholar
Zilman, A., Di Talia, S., Chait, B. T., Rout, M. P. & Magnasco, M. O. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput. Biol.3, e125 (2007). ADSPubMedPubMed Central Google Scholar
Zilman, A. et al. Enhancement of transport selectivity through nano-channels by non-specific competition. PLoS Comput. Biol.6, e1000804 (2010). MathSciNetPubMedPubMed Central Google Scholar
Huve, J., Wesselmann, R., Kahms, M. & Peters, R. 4Pi microscopy of the nuclear pore complex. Biophys. J.95, 877–885 (2008). PubMedPubMed Central Google Scholar
Kahms, M., Lehrich, P., Huve, J., Sanetra, N. & Peters, R. Binding site distribution of nuclear transport receptors and transport complexes in single nuclear pore complexes. Traffic10, 1228–1242 (2009). CASPubMed Google Scholar
Ma, J. & Yang, W. Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc. Natl Acad. Sci. USA107, 7305–7310 (2010). In this study, very high spatial resolution is achieved by a combination of confocal excitation with camera detection and modelling of data, supporting the existence of defined cargo transport routes within the NPC. ADSCASPubMedPubMed Central Google Scholar
Yang, W., Gelles, J. & Musser, S. M. Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl Acad. Sci. USA101, 12887–12892 (2004). ADSCASPubMedPubMed Central Google Scholar
Mor, A. et al. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nature Cell Biol.12, 543–552 (2010). In this paper, various large exogenous mRNP cargos are followedin vivo, and their progress from the transcription site to the NPC is shown to be slow (minutes), whereas nuclear transport is more rapid (seconds). CASPubMed Google Scholar
Feldherr, C. M., Kallenbach, E. & Schultz, N. Movement of a karyophilic protein through the nuclear pores of oocytes. J. Cell Biol.99, 2216–2222 (1984). CASPubMed Google Scholar
Dworetzky, S. I. & Feldherr, C. M. Translocation of RNA-coated gold particles through the nuclear pores of oocytes. J. Cell Biol.106, 575–584 (1988). CASPubMed Google Scholar
Richardson, W. D., Mills, A. D., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell52, 655–664 (1988). CASPubMed Google Scholar
Yang, W. & Musser, S. M. Nuclear import time and transport efficiency depend on importin β concentration. J. Cell. Biol.174, 951–961 (2006). CASPubMedPubMed Central Google Scholar
Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J.20, 1320–1330 (2001). CASPubMedPubMed Central Google Scholar
Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nature Methods5, 159–161 (2008). This study introduces a careful calibration of a simple light shield technique for fluorescence imaging, and is the first direct visualization of the high occupancy of NPCs with several individual transport receptorsin vivo. CASPubMed Google Scholar
Marenduzzo, D., Finan, K. & Cook, P. R. The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol.175, 681–686 (2006). CASPubMedPubMed Central Google Scholar
Lowe, A. R. et al. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature467, 600–603 (2010). This paper presents the constraints on large cargo transport for artificial, not deformable, cargo, showing the lower time limit for NPC translocation and the upper limit for cargo diameter. ADSCASPubMedPubMed Central Google Scholar
Sun, C., Yang, W., Tu, L. C. & Musser, S. M. Single-molecule measurements of importin α-cargo complex dissociation at the nuclear pore. Proc. Natl Acad. Sci. USA105, 8613–8618 (2008). ADSCASPubMedPubMed Central Google Scholar
Fiserova, J., Richards, S. A., Wente, S. R. & Goldberg, M. W. Facilitated transport and diffusion take distinct spatial routes through the nuclear pore complex. J. Cell Sci.123, 2773–2780 (2010). References 37 and 51 use ultrastructural studies and super-fast freezing of samples to capture cargo within the NPC in intact cells, demonstrating that cargo can travel along specific routes in the NPC. CASPubMedPubMed Central Google Scholar
Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic6, 421–427 (2005). CASPubMed Google Scholar
Dimitrov, D. I., Milchev, A. & Binder, K. Polymer brushes in cylindrical pores: simulation versus scaling theory. J. Chem. Phys.125, 34905 (2006). CASPubMed Google Scholar
Mehlin, H., Daneholt, B. & Skoglund, U. Translocation of a specific premessenger ribonucleoprotein particle through the nuclear-pore studied with electron-microscope tomography. Cell69, 605–613 (1992). CASPubMed Google Scholar
Köhler, A. & Hurt, E. C. Exporting RNA from the nucleus to the cytoplasm. Nature Rev. Mol. Cell Biol.8, 761–773 (2007). Google Scholar
Akey, C. W. Visualization of transport-related configurations of the nuclear pore transporter. Biophys. J.58, 341–355 (1990). ADSCASPubMedPubMed Central Google Scholar
Iborra, F. J., Jackson, D. A. & Cook, P. R. The path of RNA through nuclear pores: apparent entry from the sides into specialized pores. J. Cell Sci.113, 291–302 (2000). CASPubMed Google Scholar
Siebrasse, J. P. & Kubitscheck, U. Single molecule tracking for studying nucleocytoplasmic transport and intranuclear dynamics. Methods Mol. Biol.464, 343–361 (2009). PubMed Google Scholar
Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell116, 63–73 (2004). CASPubMed Google Scholar
Siebrasse, J. P. et al. Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin. Proc. Natl Acad. Sci. USA105, 20291–20296 (2008). This careful analysis of RNP mobility within the nucleus demonstrates that different mobility distributions observed for an RNP are best explained by single molecules alternating between tethering and diffusion. ADSCASPubMedPubMed Central Google Scholar
Kiseleva, E., Goldberg, M. W., Allen, T. D. & Akey, C. W. Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J. Cell Sci.111, 223–236 (1998). CASPubMed Google Scholar
Soop, T. et al. Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export. Mol. Biol. Cell16, 5610–5620 (2005). CASPubMedPubMed Central Google Scholar
Dargemont, C. & Kuhn, L. C. Export of mRNA from microinjected nuclei of Xenopus laevis oocytes. J. Cell Biol.118, 1–9 (1992). CASPubMed Google Scholar
Montpetit, B. et al. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature472, 238–242 (2011). This study presents the atomic structures of protein complexes for mRNA and factors that have been implicated in NPC-related export, and provides a model for how the release step of large cargo from the NPC is achieved. ADSCASPubMedPubMed Central Google Scholar
Conti, E. & Izaurralde, E. Nucleocytoplasmic transport enters the atomic age. Curr. Opin. Cell Biol.13, 310–319 (2001). CASPubMed Google Scholar
Reed, R. & Hurt, E. A conserved rnRNA export machinery coupled to pre-mRNA splicing. Cell108, 523–531 (2002). CASPubMed Google Scholar
Kota, K. P., Wagner, S. R., Huerta, E., Underwood, J. M. & Nickerson, J. A. Binding of ATP to UAP56 is necessary for mRNA export. J. Cell Sci.121, 1526–1537 (2008). CASPubMed Google Scholar
Stewart, M. Ratcheting mRNA out of the nucleus. Mol. Cell25, 327–330 (2007). CASPubMed Google Scholar
Rodriguez-Navarro, S. & Hurt, E. Linking gene regulation to mRNA production and export. Curr. Opin. Cell Biol.23, 302–309 (2011). CASPubMed Google Scholar
Braun, I. C., Herold, A., Rode, M. & Izaurralde, E. Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15. Mol. Cell. Biol.22, 5405–5418 (2002). CASPubMedPubMed Central Google Scholar
Segref, A. et al. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J.16, 3256–3271 (1997). CASPubMedPubMed Central Google Scholar
Li, Y. et al. An intron with a constitutive transport element is retained in a Tap messenger RNA. Nature443, 234–237 (2006). ADSCASPubMed Google Scholar
Hutten, S. & Kehlenbach, R. H. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol.17, 193–201 (2007). CASPubMed Google Scholar
Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J.18, 4332–4347 (1999). CASPubMedPubMed Central Google Scholar
Forler, D. et al. RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the nuclear pore complex and functions in nuclear mRNA export. Mol. Cell. Biol.24, 1155–1167 (2004). CASPubMedPubMed Central Google Scholar
Weirich, C. S. et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nature Cell Biol.8, 668–676 (2006). CASPubMed Google Scholar
Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J.18, 5778–5788 (1999). CASPubMedPubMed Central Google Scholar
Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell20, 645–651 (2005). CASPubMed Google Scholar
Linder, P. mRNA export: RNP remodeling by DEAD-box proteins. Curr. Biol.18, R297–R299 (2008). CASPubMed Google Scholar
Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J.21, 1177–1187 (2002). CASPubMedPubMed Central Google Scholar
Cole, C. N. & Scarcelli, J. J. Transport of messenger RNA from the nucleus to the cytoplasm. Curr. Opin. Cell Biol.18, 299–306 (2006). CASPubMed Google Scholar
Bolger, T. A., Folkmann, A. W., Tran, E. J. & Wente, S. R. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell134, 624–633 (2008). CASPubMedPubMed Central Google Scholar
von Moeller, H., Basquin, C. & Conti, E. The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nature Struct. Mol. Biol.16, 247–254 (2009). CAS Google Scholar
Alcazar-Roman, A. R., Bolger, T. A. & Wente, S. R. Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. J. Biol. Chem.285, 16683–16692 (2010). CASPubMedPubMed Central Google Scholar
Noble, K. N., Tran, E. J., Alcázar-Román, A. R., Hodge, C. A., Cole, C. N. & Wente, S. R. The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev.25, 1065–1077 (2011). CASPubMedPubMed Central Google Scholar
Gatfield, D. et al. The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila . Curr. Biol.11, 1716–1721 (2001). CASPubMed Google Scholar
Stutz, F. & Izaurralde, E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol.13, 319–327 (2003). CASPubMed Google Scholar
Ellis, R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol.11, 114–119 (2001). CASPubMed Google Scholar
Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science320, 1332–1336 (2008). Using fixed cells, this work gives a first glance at the possible contributions of super-resolution microscopy, providing high-resolution images of nuclear structure and showing how NPCs may be made accessible for large cargo. ADSCASPubMedPubMed Central Google Scholar
Terry, L. J. & Wente, S. R. Nuclear mRNA export requires specific FG nucleoporins for translocation through the nuclear pore complex. J. Cell Biol.178, 1121–1132 (2007). CASPubMedPubMed Central Google Scholar
Shitashige, M. et al. Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology134, 1961–1971 (2008). CASPubMed Google Scholar
Alvisi, G., Rawlinson, S. M., Ghildyal, R., Ripalti, A. & Jans, D. A. Regulated nucleocytoplasmic trafficking of viral gene products: a therapeutic target? Biochim. Biophys. Acta1784, 213–227 (2008). CASPubMed Google Scholar
D'Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell136, 284–295 (2009). CASPubMedPubMed Central Google Scholar
Powrie, E. A., Zenklusen, D. & Singer, R. H. A nucleoporin, Nup60p, affects the nuclear and cytoplasmic localization of ASH1 mRNA in S. cerevisiae . RNA17, 134–144 (2010). PubMed Google Scholar
Isken, O. & Maquat, L. E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev.21, 1833–1856 (2007). CASPubMed Google Scholar
Satterly, N. et al. Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc. Natl Acad. Sci. USA104, 1853–1858 (2007). ADSCASPubMedPubMed Central Google Scholar
Lee, C. P. & Chen, M. R. Escape of herpesviruses from the nucleus. Rev. Med. Virol.20, 214–230 (2010). CASPubMed Google Scholar