Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress (original) (raw)
Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science319, 916–919 (2008). ArticleCASPubMed Google Scholar
Lindquist, S. L. & Kelly, J. W. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb. Perspect. Biol.3, 1–34 (2011). Article Google Scholar
Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Ann. Rev. Biochem.75, 333–366 (2006). ArticleCASPubMed Google Scholar
Houck, S.A., Singh, S. & Cyr, D. M. Cellular responses to misfolded proteins and protein aggregates. Methods Mol. Biol.832, 455–461 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen, B., Retzlaff, M., Roos, T. & Frydman, J. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol.3, a004374 (2011). ArticlePubMedPubMed Central Google Scholar
Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature454, 1088–1095 (2008). ArticleCASPubMedPubMed Central Google Scholar
Specht, S., Miller, S. B., Mogk, A. & Bukau, B. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J. Cell Biol.195, 617–629 (2011). ArticleCASPubMedPubMed Central Google Scholar
Malinovska, L., Kroschwald, S., Munder, M. C., Richter, D. & Alberti, S. Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol. Biol. Cell23, 3041–3056 (2012). ArticleCASPubMedPubMed Central Google Scholar
Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol.143, 1883–1898 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X. & Qian, S. B. Chaperone-mediated hierarchical control in targeting misfolded proteins to aggresomes. Mol. Biol. Cell22, 3277–3288 (2011). ArticleCASPubMedPubMed Central Google Scholar
Douglas, P. M., Summers, D. W. & Cyr, D. M. Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways. Prion3, 51–58 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science313, 1604–1610 (2006). ArticleCASPubMed Google Scholar
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature431, 805–810 (2004). ArticleCASPubMed Google Scholar
Liu, B. et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell140, 257–267 (2010). ArticleCASPubMed Google Scholar
Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell130, 165–178 (2007). ArticleCASPubMed Google Scholar
Toshima, J. Y. et al. Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent alpha-factor derivatives. Proc. Natl Acad. Sci. USA103, 5793–5798 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wright, R., Basson, M., D’Ari, L. & Rine, J. Increased amounts of HMG-CoA reductase induce ”karmellae”: a proliferation of stacked membrane pairs surrounding the yeast nucleus. J. Cell Biol.107, 101–114 (1988). ArticleCASPubMed Google Scholar
Shibata, Y., Voeltz, G. K. & Rapoport, T. A. Rough sheets and smooth tubules. Cell126, 435–439 (2006). ArticleCASPubMed Google Scholar
Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell124, 573–586 (2006). ArticleCASPubMed Google Scholar
Shibata, Y. et al. The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J. Biol. Chem.283, 18892–18904 (2008). ArticleCASPubMedPubMed Central Google Scholar
West, M., Zurek, N., Hoenger, A. & Voeltz, G. K. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol.193, 333–346 (2011). ArticleCASPubMedPubMed Central Google Scholar
McClellan, A. J., Scott, M. D. & Frydman, J. Folding and quality control of the VHL tumor suppressor proceed through distinct chaperone pathways. Cell121, 739–748 (2005). ArticleCASPubMed Google Scholar
Schneider, C. et al. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. Natl Acad. Sci. USA93, 14536–14541 (1996). ArticleCASPubMedPubMed Central Google Scholar
Becker, J., Walter, W., Yan, W. & Craig, E. A. Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol. Cell Biol.16, 4378–4386 (1996). ArticleCASPubMedPubMed Central Google Scholar
Caplan, A. J., Tsai, J., Casey, P. J. & Douglas, M. G. Farnesylation of YDJ1p is required for function at elevated growth temperatures in Saccharomyces cerevisiae. J. Biol. Chem.267, 18890–18895 (1992). CASPubMed Google Scholar
Flom, G. A., Lemieszek, M., Fortunato, E. A. & Johnson, J. L. Farnesylation of Ydj1 is required for in vivo interaction with Hsp90 client proteins. Mol. Biol. Cell19, 5249–5258 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kampinga, H. H. & Craig, E. A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol.11, 579–592 (2010). ArticleCASPubMedPubMed Central Google Scholar
Youker, R. T., Walsh, P., Beilharz, T., Lithgow, T. & Brodsky, J. L. Distinct rolesfor the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Mol. Biol. Cell15, 4787–4797 (2004). ArticleCASPubMedPubMed Central Google Scholar
Shorter, J. & Lindquist, S. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J.27, 2712–2724 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tipton, K. A., Verges, K. J. & Weissman, J. S. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol. Cell32, 584–591 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gupta, R. et al. Firefly luciferase mutants as sensors of proteome stress. Nat. Methods8, 879–884 (2011). ArticleCASPubMed Google Scholar
Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi +]. Science268, 880–884 (1995). ArticleCASPubMed Google Scholar
Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell5, 163–172 (2000). ArticleCASPubMed Google Scholar
Meriin, A. B. et al. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol.157, 997–1004 (2002). ArticleCASPubMedPubMed Central Google Scholar
Piper, P. W. The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol. Lett.134, 121–127 (1995). ArticleCASPubMed Google Scholar
Trotter, E. W. et al. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J. Biol. Chem.277, 44817–44825 (2002). ArticleCASPubMed Google Scholar
Morimoto, R. I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev.22, 1427–1438 (2008). ArticleCASPubMedPubMed Central Google Scholar
Taylor, R. C. & Dillin, A. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol.3, 1–17 (2011). Article Google Scholar
Fabrizio, P. & Longo, V. D. The chronological life span of Saccharomyces cerevisiae. Aging Cell2, 73–81 (2003). ArticleCASPubMed Google Scholar
Narayanaswamy, R. et al. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc. Natl Acad. Sci. USA106, 10147–10152 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab.11, 453–465 (2010). ArticleCASPubMedPubMed Central Google Scholar
Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell94, 73–82 (1998). ArticleCASPubMed Google Scholar
Mandal, A. K. et al. Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol. Biol. Cell21, 1439–1448 (2010). ArticleCASPubMedPubMed Central Google Scholar
Huyer, G. et al. Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J. Biol. Chem.279, 38369–38378 (2004). ArticleCASPubMed Google Scholar
Ouellet, J. & Barral, Y. Organelle segregation during mitosis: lessons from asymmetrically dividing cells. J. Cell Biol.196, 305–313 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gidalevitz, T., Krupinski, T., Garcia, S. & Morimoto, R. I. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet.5, e1000399 (2009). ArticlePubMedPubMed Central Google Scholar
Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell144, 67–78 (2011). ArticleCASPubMed Google Scholar
Kikis, E. A., Gidalevitz, T. & Morimoto, R. I. Protein homeostasis in models of aging and age-related conformational disease. Adv. Exp. Med. Biol.694, 138–159 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shorter, J. Hsp104: a weapon to combat diverse neurodegenerative disorders. Neurosignals16, 63–74 (2008). ArticleCASPubMed Google Scholar
Gidalevitz, T., Prahlad, V. & Morimoto, R. I. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb. Perspect. Biol.3, 1–18 (2011). Article Google Scholar
Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell144, 79–91 (2011). ArticleCASPubMedPubMed Central Google Scholar
Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science285, 901–906 (1999). ArticleCASPubMed Google Scholar
Nathan, D. F. & Lindquist, S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell Biol.15, 3917–3925 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell123, 305–320 (2005). ArticleCASPubMed Google Scholar
Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast14, 953–961 (1998). ArticleCASPubMed Google Scholar
Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast21, 947–962 (2004). ArticleCASPubMed Google Scholar
Alberti, S., Gitler, A. D. & Lindquist, S. A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast24, 913–919 (2007). ArticleCASPubMed Google Scholar
Furuta, N., Fujimura-Kamada, K., Saito, K., Yamamoto, T. & Tanaka, K. Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway. Mol. Biol. Cell18, 295–312 (2007). ArticleCASPubMedPubMed Central Google Scholar