Chk2 activates E2F-1 in response to DNA damage (original) (raw)

References

  1. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).
    Article CAS PubMed Google Scholar
  2. Sherr, C.J. Cancer cell cycles. Science 274, 1672–1677 (1996).
    Article CAS PubMed Google Scholar
  3. Trimarchi, J.M. & Lees, J.A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).
    Article CAS Google Scholar
  4. Field, S.J. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561 (1996).
    Article CAS PubMed Google Scholar
  5. Yamasaki, L. et al. Tumour induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–547 (1996).
    Article CAS PubMed Google Scholar
  6. Xu, G., Livingston, D.M. & Krek, W. Multiple members of the E2F transcription factor family are the products of oncogenes. Proc. Natl Acad. Sci. USA 92, 357–1361 (1995).
    Google Scholar
  7. Wu., L. et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414, 457–462 (2001).
    Article CAS PubMed Google Scholar
  8. Qin, X.Q., Livingston, D.M., Kaelin, W.G. Jr & Adams, P.D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918–10922 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  9. Shan, B. & Lee, W.H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell Biol. 14, 8166–8173 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  10. Wu, X. & Levine, A.J. P53 and E2F-1 co-operate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  11. DeGregori, J., Leone, G., Miron, A., Jakoi, L. & Nevins, J.R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl Acad. Sci. USA 94, 7245–7250 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  12. Bates, S. et al. p14ARF links the tumour suppressor RB and p53. Nature 395, 124–125 (1998).
    Article CAS PubMed Google Scholar
  13. Sherr, C.J. Tumour surveillance via the ARF–p53 pathway. Genes Dev. 12, 2984–2991 (1998).
    Article CAS PubMed Google Scholar
  14. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).
    Article CAS PubMed Google Scholar
  15. Lissy, N.A., Davis, P.K., Irwin, M., Kaelin, W.G. & Dowdy, S.F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–644 (2000).
    Article CAS PubMed Google Scholar
  16. Stiewe, T. & Putzer, B.M. Role of the p53 homologue p73 in E2F-1-induced apoptosis. Nature Genet. 26, 464–469 (2000).
    Article CAS PubMed Google Scholar
  17. Moroni, M.C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).
    Article CAS PubMed Google Scholar
  18. Loughran, Ö. & La Thangue, N.B. Apoptotic and growth-promoting activity of E2F modulated by MDM2. Mol. Cell. Biol. 20, 2186–2197 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  19. Blattner, C., Sparks, A., & Lane, D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol. Cell Biol. 19, 3704–3713 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  20. Lin, W.C., Lin, F.T. & Nevins, J.R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15, 1833–1844 (2001).
    CAS PubMed PubMed Central Google Scholar
  21. Durocher, D. & Jackson, S.P. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr. Opin. Cell Biol. 13, 225–231 (2001).
    Article CAS PubMed Google Scholar
  22. Chehab, N.H., Malikzay, A., Appel, M. & Halazonetis, T.D. Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14, 278–288 (2000).
    CAS PubMed PubMed Central Google Scholar
  23. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).
    Article CAS PubMed Google Scholar
  24. Sheih, S.Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologues of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylates p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).
    Google Scholar
  25. Falck, J., Maitland, N., Syljuåsen, R.G., Bartek, J. & Lukas, J. The ATM–chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001).
    Article CAS PubMed Google Scholar
  26. Peng, C.-Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S. & Piwnica-Worms, H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997).
    Article CAS PubMed Google Scholar
  27. Lee, J.-S., Collins, K.M., Brown, A.L., Lee, C.-H. & Chung, J.H. HCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000).
    Article CAS PubMed Google Scholar
  28. Yang, S., Kuo, C., Bisi, J.E. & Kim, M.K. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nature Cell Biol. 4, 865–870 (2002).
    Article CAS PubMed Google Scholar
  29. Takai, H. et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO. J. 21, 5195–5205 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  30. Botz, J. et al. Cell cycle regulation of the murine cyclinE gene depends on an E2F binding site in the promoter. Mol. Cell. Biol. 16, 3401–3409 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  31. Bell, D.W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531 (1999).
    Article CAS PubMed Google Scholar
  32. Falck, J. et al. Functional impact of concomitant versus alternative defects in the Chk2–p53 tumour suppressor pathway. Oncogene 20, 5505–5510 (2001).
    Article Google Scholar
  33. Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. 97, 10389–10394 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  34. Johnson, D.G., Schwartz, J.K., Cress, W.D. & Nevins, J. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365, 349–352 (1993).
    Article CAS PubMed Google Scholar
  35. Johnson, D.G., Cress, W.D., Jakol, L. & Nevins, J.R. Oncogenic capacity of the E2F1 gene. Proc. Natl Acad. Sci. USA. 91, 12823–12827 (1996).
    Article Google Scholar
  36. Lucas, J., Petersen, B.O., Holm, K., Bartek, J. & Helin, K. Deregulated expression of E2F family members induces S-phase entry and overcome p16INK4A-mediated growth suppression. Mol. Cell. Biol. 16, 1047–1057 (1996).
    Article Google Scholar
  37. Yamasaki, L. et al. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−) mice. Nature Genet. 18, 360–364 (1998).
    Article CAS PubMed Google Scholar
  38. Lakin, N.D. & Jackson, S.P. Regulation of p53 in response to DNA damage. Oncogene 18, 7644–7655 (1999).
    Article CAS PubMed Google Scholar
  39. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).
    Article CAS PubMed Google Scholar
  40. Koh, L. & Prives, C. P53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).
    Article Google Scholar
  41. Agami, R. & Bernards, R. Distinct initiation and maintenance mechanisms co-operate to induce G1 cell cycle arrest in response to DNA damage. Cell 102, 55–66 (2000).
    Article CAS PubMed Google Scholar
  42. Allen, K.E., de la Luna, S., Kerkhoven, R.M., Bernards, R. & La Thangue, N.B. Distinct mechanisms of nuclear accumulation regulate the functional consequence of E2F transcription factors. J. Cell Sci. 110, 2819–2831 (1997).
    CAS PubMed Google Scholar
  43. Bandara, L.R., Buck, V.M., Zamanian, M., Johnston, L.H. & La Thangue, N.B. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF/E2F. EMBO J. 12, 4317–4324 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  44. Morris, L., Allen, K.E. & La Thangue, N.B. Regulation of E2F transcription by cyclinE/cdk2 kinase mediated through p300/CBP co-activators. Nature Cell Biol. 12, 232–239 (2000).
    Article Google Scholar
  45. de la Luna, S., Allen, K.E., Mason, S.M. & La Thangue, N.B. Integration of a growth-suppressing BTB/POZ domain protein with the DP component of the E2F transcription factor. EMBO J. 18, 212–228 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  46. Chan, H.-M., Kristic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N.B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Cell Biol. 3, 667–674 (2001).
    Article CAS PubMed Google Scholar

Download references