Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature404, 293–296 (2000). ArticleCASPubMed Google Scholar
Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596 (2004). ArticleCASPubMed Google Scholar
Pillai, R.S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science309, 1573–1576 (2005). ArticleCASPubMed Google Scholar
Sen, G.L. & Blau, H.M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol.7, 633–636 (2005). ArticleCASPubMed Google Scholar
Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H.L. RNA-directed de novo methylation of genomic sequences in plants. Cell76, 567–576 (1994). ArticleCASPubMed Google Scholar
Pal-Bhadra, M., Bhadra, U. & Birchler, J.A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell9, 315–327 (2002). ArticleCASPubMed Google Scholar
Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. & Hannon, G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science293, 1146–1150 (2001). ArticleCASPubMed Google Scholar
Caudy, A.A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature425, 411–414 (2003). ArticleCASPubMed Google Scholar
Caudy, A.A., Myers, M., Hannon, G.J. & Hammond, S.M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev.16, 2491–2496 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ishizuka, A., Siomi, M.C. & Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev.16, 2497–2508 (2002). ArticleCASPubMedPubMed Central Google Scholar
Song, J.J., Smith, S.K., Hannon, G.J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science305, 1434–1437 (2004). ArticleCASPubMed Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004). ArticleCASPubMed Google Scholar
Parker, J.S., Roe, S.M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J.23, 4727–4737 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yuan, Y.R. et al. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell19, 405–419 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wintersberger, U. Ribonucleases H of retroviral and cellular origin. Pharmacol. Ther.48, 259–280 (1990). ArticleCASPubMed Google Scholar
Schwarz, D.S., Tomari, Y. & Zamore, P.D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr. Biol.14, 787–791 (2004). ArticleCASPubMed Google Scholar
Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell15, 185–197 (2004). ArticleCASPubMed Google Scholar
Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell110, 563–574 (2002). ArticleCASPubMed Google Scholar
Nykanen, A., Haley, B. & Zamore, P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell107, 309–321 (2001). ArticleCASPubMed Google Scholar
Rivas, F.V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol.12, 340–349 (2005). ArticleCASPubMed Google Scholar
Rand, T.A., Ginalski, K., Grishin, N.V. & Wang, X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl. Acad. Sci. USA101, 14385–14389 (2004). ArticleCASPubMedPubMed Central Google Scholar
Song, J.J. & Joshua-Tor, L. Argonaute and RNA–getting into the groove. Curr. Opin. Struct. Biol.16, 5–11 (2006). ArticleCASPubMed Google Scholar
Song, J.J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol.10, 1026–1032 (2003). ArticleCASPubMed Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature426, 465–469 (2003). ArticleCASPubMed Google Scholar
Yan, K.S. et al. Structure and conserved RNA binding of the PAZ domain. Nature426, 468–474 (2003). ArticlePubMedCAS Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol.11, 576–577 (2004). ArticleCASPubMed Google Scholar
Ma, J.B., Ye, K. & Patel, D.J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature429, 318–322 (2004). ArticleCASPubMedPubMed Central Google Scholar
Haren, L., Ton-Hoang, B. & Chandler, M. Integrating DNA: transposases and retroviral integrases. Annu. Rev. Microbiol.53, 245–281 (1999). ArticleCASPubMed Google Scholar
Kennedy, A.K., Haniford, D.B. & Mizuuchi, K. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Cell101, 295–305 (2000). ArticleCASPubMed Google Scholar
Krakowiak, A., Owczarek, A., Koziolkiewicz, M. & Stec, W.J. Stereochemical course of Escherichia coli RNase H. ChemBioChem3, 1242–1250 (2002). ArticleCASPubMed Google Scholar
Nowotny, M., Gaidamakov, S.A., Crouch, R.J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell121, 1005–1016 (2005). ArticleCASPubMed Google Scholar
Lovell, S., Goryshin, I.Y., Reznikoff, W.R. & Rayment, I. Two-metal active site binding of a Tn5 transposase synaptic complex. Nat. Struct. Biol.9, 278–281 (2002). ArticleCASPubMed Google Scholar
Baumberger, N. & Baulcombe, D.C. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. USA102, 11928–11933 (2005). ArticleCASPubMedPubMed Central Google Scholar
Qi, Y. et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature443, 1008–1012 (2006). ArticlePubMed Google Scholar
Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M.C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev.19, 2837–2848 (2005). ArticleCASPubMedPubMed Central Google Scholar
Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev.20, 2214–2222 (2006). ArticleCASPubMedPubMed Central Google Scholar
Irvine, D.V. et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science313, 1134–1137 (2006). ArticleCASPubMed Google Scholar
Sigova, A., Rhind, N. & Zamore, P.D. A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe. Genes Dev.18, 2359–2367 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell99, 123–132 (1999). ArticleCASPubMed Google Scholar
Carmell, M.A., Xuan, Z., Zhang, M.Q. & Hannon, G.J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev.16, 2733–2742 (2002). ArticleCASPubMed Google Scholar
Cox, D.N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev.12, 3715–3727 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lin, H. & Spradling, A.C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development124, 2463–2476 (1997). CASPubMed Google Scholar
Reddien, P.W., Oviedo, N.J., Jennings, J.R., Jenkin, J.C. & Sanchez Alvarado, A. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science310, 1327–1330 (2005). ArticleCASPubMed Google Scholar
Schmidt, E.E., Hanson, E.S. & Capecchi, M.R. Sequence-independent assembly of spermatid mRNAs into messenger ribonucleoprotein particles. Mol. Cell. Biol.19, 3904–3915 (1999). ArticleCASPubMedPubMed Central Google Scholar
Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell2, 819–830 (2002). ArticleCASPubMed Google Scholar
Kuramochi-Miyagawa, S. et al. Two mouse piwi-related genes: miwi and mili. Mech. Dev.108, 121–133 (2001). ArticleCASPubMed Google Scholar
Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature442, 203–207 (2006). ArticleCASPubMed Google Scholar
Girard, A., Sachidanandam, R., Hannon, G.J. & Carmell, M.A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature442, 199–202 (2006). ArticlePubMed Google Scholar
Grivna, S.T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev.20, 1709–1714 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lau, N.C. et al. Characterization of the piRNA complex from rat testes. Science313, 363–367 (2006). ArticleCASPubMed Google Scholar
Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev.20, 1732–1743 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell (in the press).
Tijsterman, M., Okihara, K.L., Thijssen, K. & Plasterk, R.H. PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C. elegans. Curr. Biol.12, 1535–1540 (2002). ArticleCASPubMed Google Scholar
Vastenhouw, N.L. et al. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr. Biol.13, 1311–1316 (2003). ArticleCASPubMed Google Scholar
Ma, J.B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature434, 666–670 (2005). ArticleCASPubMedPubMed Central Google Scholar
Parker, J.S., Roe, S.M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature434, 663–666 (2005). ArticleCASPubMedPubMed Central Google Scholar
Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell123, 607–620 (2005). ArticleCASPubMed Google Scholar
Rand, T.A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell123, 621–629 (2005). ArticleCASPubMed Google Scholar
Leuschner, P.J., Ameres, S.L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep.7, 314–320 (2006). ArticleCASPubMedPubMed Central Google Scholar
Haley, B., Tang, G. & Zamore, P.D. In vitro analysis of RNA interference in Drosophila melanogaster. Methods30, 330–336 (2003). ArticleCASPubMed Google Scholar
Ming, D., Wall, M.E. & Sanbonmatsu, K.Y. Domain motions in Argonaute, the catalytic engine of RNA interference. PLoS Comput. Biol. (in the press).
Gregory, R.I., Chendrimada, T.P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell123, 631–640 (2005). ArticleCASPubMed Google Scholar
Allshire, R.C., Nimmo, E.R., Ekwall, K., Javerzat, J.P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev.9, 218–233 (1995). ArticleCASPubMed Google Scholar
Partridge, J.F., Scott, K.S., Bannister, A.J., Kouzarides, T. & Allshire, R.C. _cis_-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr. Biol.12, 1652–1660 (2002). ArticleCASPubMed Google Scholar
Horn, P.J., Bastie, J.N. & Peterson, C.L.A. Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev.19, 1705–1714 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jia, S., Kobayashi, R. & Grewal, S.I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat. Cell Biol.7, 1007–1013 (2005). ArticleCASPubMed Google Scholar
Li, F. et al. Two novel proteins, dos1 and dos2, interact with rik1 to regulate heterochromatic RNA interference and histone modification. Curr. Biol.15, 1448–1457 (2005). ArticleCASPubMed Google Scholar
Thon, G. et al. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics171, 1583–1595 (2005). ArticleCASPubMedPubMed Central Google Scholar
Motamedi, M.R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell119, 789–802 (2004). ArticleCASPubMed Google Scholar
Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001). ArticleCASPubMed Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCASPubMed Google Scholar
Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature432, 231–235 (2004). ArticleCASPubMed Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001). ArticleCASPubMed Google Scholar
Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293, 834–838 (2001). ArticleCASPubMed Google Scholar
Ketting, R.F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.15, 2654–2659 (2001). ArticleCASPubMedPubMed Central Google Scholar
Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L. & Poethig, R.S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev.18, 2368–2379 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ambros, V., Lee, R.C., Lavanway, A., Williams, P.T. & Jewell, D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol.13, 807–818 (2003). ArticleCASPubMed Google Scholar
Lee, R.C., Hammell, C.M. & Ambros, V. Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA12, 589–597 (2006). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y., Mochizuki, K. & Gorovsky, M.A. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA101, 1679–1684 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mochizuki, K., Fine, N.A., Fujisawa, T. & Gorovsky, M.A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell110, 689–699 (2002). ArticleCASPubMed Google Scholar
Taverna, S.D., Coyne, R.S. & Allis, C.D. Methylation of histone h3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell110, 701–711 (2002). ArticleCASPubMed Google Scholar