Genetic analysis of ageing: role of oxidative damage and environmental stresses (original) (raw)
References
Medawar, P.B. Old age and natural death. Modern Quarterly.1, 30–56 (1946). Google Scholar
Medawar, P.B. An Unsolved Problem of Biology (H.K. Lewis, London, 1952). Google Scholar
Hamilton, W.D. The moulding of senescence by natural selection. J. Theor. Biol.12, 12–45 (1966). ArticleCASPubMed Google Scholar
Charlesworth, B. Evolution in Age-Structured Populations, 2nd Edn. (Cambridge University Press, Cambridge, 1994).
Williams, G.C., Pleiotropy, natural selection, and the evolution of senescence. Evolution.11, 398–411 (1957). Article Google Scholar
Rose, M.R. & Charlesworth, B. A test of evolutionary theories of senescence. Nature.287, 141–142 (1980). ArticleCASPubMed Google Scholar
Hughes, K.A. & Charlesworth, B. A genetic analysis of senescence in Drosophila. Nature367, 64–66 (1994). ArticleCASPubMed Google Scholar
Wilson, P.W.F. et al. Apolipoprotein E alleles, dyslipidemia, and coronary heart diseasa. JAMA.272, 1666–1671 (1994). ArticleCASPubMed Google Scholar
Saunders, A.M. et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology43, 1467–1472 (1993). ArticleCASPubMed Google Scholar
Rose, M.R. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution38, 1004–1010 (1984). ArticlePubMed Google Scholar
Luckinbill, L.S., Arking, R., Clare, M.J., Cirocco, W.C. & Buck, S.A. Selection for delayed senescence in Drosophila melanogaster. Evolution38, 996–1003 (1984). ArticlePubMed Google Scholar
Zwaan, B., Bijlmsa, R. & Hoekstra, R.F. Direct selection on life span in Drosophila melanogaster. Evolution49, 649–659 (1995a). ArticlePubMed Google Scholar
Partridge, L. & Fowler, K. Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution46, 76–91 (1992). ArticlePubMed Google Scholar
Shook, D.R., Brooks, A. & Johnson, T.E. Mapping quantitative trait specifying hermaphrodite survival or self fertility in the nematode Caenorhabditis elegans. Genetics142, 801–17 (1996). ArticleCASPubMedPubMed Central Google Scholar
Albin, R.L. Antagonistic pleiotropy, mutation accumulation, and human genetic disease. in Genetics and Evolution of Aging.(Eds Rose, M.R. & Finch, C.E.) 307–314 (Kluwer Academic Publishers, Amsterdam, 1994). Chapter Google Scholar
Finch, C.E. & Rose, M.R. Hormones and the physiological architecture of life history evolution. Q. Rev. Biol.70, 1–52 (1995). ArticleCASPubMed Google Scholar
Kirkwood, T.B.L. The disposable soma theory of aging. in Genetic Effects on Aging II(ed.Harrison, D.E.) 9–19 (Telford Press, Caldwell, NJ, 1990). Google Scholar
Wilding, G. Endocrine control of prostate cancer. Cancer Surv.23, 43–62 (1995). CASPubMed Google Scholar
Adams, M.R., Williams, J.K. & Kaplan, J.R. Effects of androgens on coronary artery aterosclerosis and atherosclerosis-related impairment of vascular responsiveness. Arterioscl. Thromb. Vasc. Biol.15, 562–570 (1995). ArticleCASPubMed Google Scholar
Grossman, C.J. Interactions between the gonadal steroids and the immune system. Science227, 257–261 (1985). ArticleCASPubMed Google Scholar
Cerami, A. Hypothesis: glucose as a mediator of aging. J. Am. Geriatr. Soc.33, 626–634 (1985). ArticleCASPubMed Google Scholar
Monnier, V.M., Sell, D.R., Ramanakoppa, J. & S. Miyata, Mechanisms of protection against damage mediated by the Maillard reaction in aging. Gerontol.37, 152–165 (1991). ArticleCAS Google Scholar
Dickman, C.R. & Braithwaite, R.W. Postmating mortality of males in the dasyurid marsupials, Dasyurus and Parantechinus. J. Mamm.73, 143–147 (1992). Article Google Scholar
Austad, S.N. Retarded senescence in an insular population of Virginia (Didelphis virginiana) opossums. J. Zool. Lond.229, 695–708 (1993). Article Google Scholar
Kenyon, C. Ponce d-elegans: genetic quest for the fountain of youth. Cell.84, 501–504 (1996). ArticleCASPubMed Google Scholar
Kirkwood, T.B.L. & Cremer, T. Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress. Hum. Genet.60, 101–121 (1982). ArticleCASPubMed Google Scholar
Rothstein, M. Biochemical Approaches to Aging. (Academic Press, New York, 1982). Google Scholar
Van Remmen, H., Ward, W.F., Sabia, R.V. & Richardson, A. Gene expression and protein degradation. in Handbook of Physiology (ed Masoro, E.J.) 171–234 (Oxford University Press, New York, 1995).
Swisshelm, K., Disteche, C.M., Thorvaldsen, J., Nelson, A. & Salk, D. Age-related increase in methylation of ribosomal genes and inactivation of chromosome-specific rRNA gene clusters in mouse. Mutat. Res.237, 131–146 (1990). ArticleCASPubMed Google Scholar
Sell, D.R. & Monnier, V.M. Aging of long-lived proteins: extracellular matrix (collagens, elastins, proteoglycans) and lens crystallins. in Aging (ed. Masoro, E.J.) (Oxford University Press, New York, 1995).
Harman, D. Free-radical theory of aging: increasing the functional life span. Ann. NY Acad. Sci.717, 1–15 (1994). ArticleCASPubMed Google Scholar
Swartz, H.M. & Mäder, K. Free radicals in aging: theories, facts, and artifacts. in Molecular Aspects of Aging (eds Esser, K. & Martin, G.M.) (John Wiley & Sons Ltd., Chichester, England, 1995). Google Scholar
Stadtman, E.R. Protein oxidation and aging. Science267, 1220–1224 (1992). Article Google Scholar
Newcomb, T.G. & Loeb, L.A. Oxidative DNA damage and mutagenesis. in DNA Damage and Repair (eds Nickoloff, J. & Hoekstra, M.) (Human Press, Totowa, New Jersey, 1996). Google Scholar
Shigenaga, M.K., Hagen, T.M. & Ames, B.N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA91, 10771–10778 (1994). ArticleCASPubMedPubMed Central Google Scholar
Osiewacz, H.D. Aging and genetic instabilities. in Molecular Aspects of Aging (eds Esser, K & Martin, G. M.) 29–44 (John Wiley and Sons, Chichester, 1995). Google Scholar
Jazwinski, S.M., Handbook of the Biology of Aging, 4th edn. (eds Rowe,J. W. & Schneider, E. L.) 39–54 (Academic Press, New York, 1996). Google Scholar
Munkres, K.D., Genetic coregulation of longevity and antioxienzymes in Neurospora crassa. Free Rad. Biol. Med.8, 355–361 (1990). ArticleCASPubMed Google Scholar
Kennedy, B.K., Austriaco, N.R.,Jr, Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell.80, 485–496 (1995). ArticleCASPubMed Google Scholar
D'Mello, N.P. et al. Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J. Biol. Chem.269, 15451–15459 (1994). ArticleCASPubMed Google Scholar
Jazwinski, S.M. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica.91, 35–51 (1993). ArticleCASPubMed Google Scholar
Sun, J., Kale, S.P., Childress, A.M., Pinswasdi, C. & Jazwinski, S.M. Divergent roles of RAS1 and RAS2 in yeast longevity. J. Biol. Chem.269, 18638–18645 (1994). ArticleCASPubMed Google Scholar
Kale, S.P. & Jazwinski, S.M. Differential response to UV stress and DNA damage during the yeast replicative life span. Dev. Genet. (in the press).
Bertrand, H. Senescence is coupled to induction of an oxidative phosphorylation stress response by mitochondrial MA mutations in Neurospora. Can. J. Bot.73, S198–S204 (1995). ArticleCAS Google Scholar
Munkres, K.D. & Furtek, C. A. Selection of conidial longevity mutants of Neurospora crassa.Mech. Ageing Dev.25, 47–62 (1984). ArticleCASPubMed Google Scholar
Munkres, K.D. Selection and analysis of superoxide dismutase mutants of Neurospora. Free Rad. Biol. Med.13, 305–318 (1992). ArticleCASPubMed Google Scholar
Longo, V.D., Gralla, E.B. & Valentine, J.S. Superoxide dismutase activity is essential for respiratory growth and stationary phase survival in Saccharomyces cerevisiae: in vivo mitochondrial production of toxic oxygen species under normal aeration. J. Biol. Chem. (in the press).
Wood, W.B. The Biology of Caenorhabditis elegans (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1988).
Lithgow, G.J. in Handbook of the Biology of Aging, 4th Edn. (eds Rowe, J. W. & Schneider, E. L.) 55–73 (Academic Press, New York, 1996). Google Scholar
Johnson, T.E. & Hutchinson, E.W. Absence of strong heterosis for life span and other life history traits in Caenorhabditis elegans. Genetics134, 465–474 (1993). ArticleCASPubMedPubMed Central Google Scholar
Friedman, D.B. & Johnson, T.E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics118, 75–86 (1988). ArticleCASPubMedPubMed Central Google Scholar
Friedman, D.B. & Johnson, T.E. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J. Gerontol. Bio. Sci.43, B102–B109 (1988). ArticleCAS Google Scholar
Lithgow, G.J., White, T.M., Melov, S. & Johnson, T.E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. USA92, 7540–7544 (1995). ArticleCASPubMedPubMed Central Google Scholar
Murakami, S. & Johnson, T.E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics (in the press).
Jurkiewicz, B.A. & Buettner, G.R. Ultraviolet light-induced free radical formation in skin: An electron paramagnetic resonance study. Photochem. PhotoBiol.59, 1–4 (1994). ArticleCASPubMed Google Scholar
Godar, D.E., Thomas, D.P., Miller, S.A. & Lee, W. Long-wave length UVA radiation induced oxidative stress, cytoskeletal damage and hemolysis. Photochem. PhotoBiol.57, 1018–1026 (1993). ArticleCASPubMed Google Scholar
Johnson, T.E. The increased life span of age-1 mutants in Caenorhabditis elegans results from lowering the Gompertz rate of aging. Science249, 908–12 (1990). ArticleCASPubMed Google Scholar
Duhon, S.A. & Johnson, T.E. Movement as an index of vitality: comparing wild type and the age-1 mutant of Caenorhabditis elegans. J. Gerontol. Biol. Sci.50, B254–B261 (1995). ArticleCAS Google Scholar
Vanfleteren, J.F. & DeVreese, A. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB. J.9, 1355–1361 (1996). Article Google Scholar
Melov, S., Lithgow, G.J., Fischer, D.R., Tedesco, P.M. & Johnson, T.E. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucl. Acids Res.23, 1419–1425 (1995). ArticleCASPubMedPubMed Central Google Scholar
Riddle, D. The dauer larva, in The Nematode Caenorhabditis elegans. (ed. Wood, W. B.) 393–412 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988).
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C.elegans mutant that lives twice as long as wild type. Nature366, 461–464 (1993). ArticleCASPubMed Google Scholar
Larsen, P.L., Albert, P.S. & Riddle, D.L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics139, 1567–1583 (1995). ArticleCASPubMedPubMed Central Google Scholar
Wong, A., Boutis, P. & Hekimi, S. Mutations in the clk-1 gene of Caenorhabditis elegans_affect developmental and behavioral timing. Genetics139, 1247–1259 (1995). ArticleCASPubMedPubMed Central Google Scholar
Van Voorhies, W.A. Production of sperm reduces nematode lifespan. Nature360, 456–458 (1992). ArticleCASPubMed Google Scholar
Gems, D. & Riddle, D.R. Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature379, 723–25 (1996). ArticleCASPubMed Google Scholar
Ebert, R.H. et al. Longevity-determining genes in Caenorhabditis elegans: chromosomal mapping of multiple noninteractive loci. Genetics135, 1003–1010 (1993). ArticleCASPubMed Google Scholar
Wattiaux, J.M. Cumulative parental effects in Drosophila subobscura. Evolution22, 406–421 (1968). ArticleCASPubMed Google Scholar
Wattiaux, J.M. Parental age effects in Drosophila pseudoobscura. Exp. Gerontol.3, 55–61 (1968b). ArticleCASPubMed Google Scholar
Service, P.M., Hutchinson, E.W., MacKinley, M.D. & Rose, M.R. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol. Zool.58, 380–389 (1985). Article Google Scholar
Service, P.M. Physiological mechanisms of increased stress resistance in Drosophila melanogaster. Physiol. Zool.60, 321–326 (1987). Article Google Scholar
Arking, R., Buck, S., Berrios, A., Dwyer, S. & Baker, G.T. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev. Genet.12, 362–370 (1991). ArticleCASPubMed Google Scholar
Rose, M.R., Vu, L.N., Park, S.U. & Graves, J.L. Jr., Selection on stress resistance increases longevity in Drosophila melanogaster. Exp. Gerontol.27, 241–250 (1992). ArticleCASPubMed Google Scholar
Hillesheim, E. & Stearns, S.C. Correlated responses in life-history traits to artificial selection for body weight in Drosophila melanogaster. Evolution46, 745–752 (1992). ArticlePubMed Google Scholar
Zwaan, B., Bujlsma, R. & Hoekstra, R.F. Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses. Evolution49, 635–648 (1995). ArticlePubMed Google Scholar
Buck, S., Wells, R.A., Dudas, S.R., Baker, G.T. & Arking, R. Chromosomal localization and regulation of the longevity determinant genes in a selected strain of Drosophila melanogaster. Heredity71, 11–22 (1993). ArticlePubMed Google Scholar
Dudas, S.P. & Arking, R. A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J. Gerontol. Biol. Sci.50A, B117–B127 (1995). ArticleCAS Google Scholar
Johnson, T.E., Lithgow, G.J., Murakami, S., Duhon, S.A. & Shook, D.R. Genetics of aging and longevity in lower organisms. in Cellular Aging and Cell Death (eds Holbrook, N. & Martin, G. R.) 1–17 (John Wiley and Sons, NY, 1996). Google Scholar
Hutchinson, E.W. & Rose, M.R. Quantitative genetic analysis of postponed aging in Drosophila melanogaster. in Genetic Effects of Aging II. (ed. Harrison, D.L.) 65–85 felford Press, Caldwell, NJ, 1990).
Fleming, J.E., Spicer, G.S., Garrison, R.C. & Rose, M.R. Two-dimensional protein electrophoretic analysis of postponed aging in Drosophila. Genetica91, 183–198 (1993). ArticleCASPubMed Google Scholar
Clare, M.J. & Luckinbill, L.S. The effects of gene-environment interaction on the expression of longevity. Heredity55, 19–26 (1985). ArticlePubMed Google Scholar
Service, P.M., Hutchinson, E.W. & Rose, M.R. Multiple genetic mechanisms for the evolution of senescence in Drosophila melanogaster. Evolution42, 708–716 (1988). ArticleCASPubMed Google Scholar
Buck, S. et al. Larval regulation of adult longevity in a genetically-selected long-lived strain of Drosophila. Heredity71, 23–32 (1993). ArticlePubMed Google Scholar
Hilliker, A.J., Dufy, B., Evans, D. & Phillips, J.P. Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc. Natl. Acad. Sci. USA89, 4343–4347 (1992). ArticleCASPubMedPubMed Central Google Scholar
Griswold, C.M., Matthews, A.L., Bewley, K.E. & Mahaffey, J.W. Molecular characterization and rescue of acatalasemic mutants of Drosophila melanogaster. Genetics134, 781–788 (1993). ArticleCASPubMedPubMed Central Google Scholar
Orr, W.C. & Sohal, R.C. Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science263, 1128–1130 (1994). ArticleCASPubMed Google Scholar
Orr, W.C. & Sohal, R.C. The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys.297, 35–41 (1992). ArticleCASPubMed Google Scholar
Orr, W.C. & Sohal, R.C. Effects of Cu-Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys.301, 34–40 (1993). ArticleCASPubMed Google Scholar
Masoro, E.J. FRAR course on laboratory approaches to aging. Nutrition, including diet restriction, in mammals. Aging.5, 269–275 (1993). CASPubMed Google Scholar
Covelli, V. et al. Inheritance of immune responsiveness, life span, and disease incidence in interline crosses of mice selected for high or low multispecific antibody production. J. Immunol.142, 1224–1234 (1989). CASPubMed Google Scholar
Puel, A., Groot, P.C., Lathrop, M.G., Demant, P. & Mouton, D. Mapping of genes controlling quantitative antibody production in Biozzi mice. J. Immunol.154, 5799–5805 (1995). CASPubMed Google Scholar
Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet.11, 241–247 (1995). ArticleCASPubMed Google Scholar
Mote, P.L., Grizzle, J.M., Walford, R.L. & Spindler, S.R. Aging alters hepatic expression of insulin receptor and c-jun mRNA in the mouse. Mutat. Res.256, 7–12 (1991). ArticleCASPubMed Google Scholar
Yu, B.P. Antioxidant action of dietary restriction in the aging process. J. Nutr. Sci. Vitaminol. Tokyo.39, S75–S83 (1993). ArticleCASPubMed Google Scholar
Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J. & Lal, H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev.74, 121–133 (1994). ArticleCASPubMed Google Scholar
Sohal, R.S., Agarwal, S., Candas, M., Forster, M.J. & Lal, H. Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech. Ageing Dev.76, 215–224 (1994). ArticleCASPubMed Google Scholar
Hass, B.S., Hart, R.W., Lu, M.H. & Lyn-Cook, B.D. Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat. Res.295, 281–289 (1993). ArticleCASPubMed Google Scholar
Wolf, N.S., Penn, P.E., Jiang, D., Fei, R.G. Pendergrass, W.R. Caloric restriction: conservation of in vivo cellular replicative capacity accompanies life-span extension in mice. Exp. Cell Res.217, 317–323 (1995). ArticleCASPubMed Google Scholar
Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J. & Ames, B.N. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl. Acad. Sci. USA92, 4337–4341 (1995). ArticleCASPubMedPubMed Central Google Scholar
Sundaresan, M., Zu-Xi, Y., Ferrans, V.J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science270, 296–299 (1995). ArticleCASPubMed Google Scholar
Korsmeyer, S.J., Yin, X.M., Oltvai, Z.N., Veis-Novack, D.J. & Linette, G.P. Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochem. Biophys. Acta1271, 63–66 (1995). PubMed Google Scholar
Farlie, P.G., Dringen, R., Rees, S.M., Kannourakis, G. & .bcl-2 transgene expression can protect neurons against developmental and induced cell death. Proc. Natl. Acad. Sci. USA92, 4397–4401 (1995). ArticleCASPubMedPubMed Central Google Scholar
Czech, C., Masters, C. & Beyreuther, K. Alzheimer's disease and transgenic mice. J. Neural Transm. Suppl.44, 219–230 (1994). CASPubMed Google Scholar
Hsiao, K.K., Loh, J., Nilsen, S. & Johannsdottir, R. Strain dependence of longevity and behavior in transgenic mice expressing mutant Alzheimer amyloid precursor protein. Soc. Neurosci.21, 257 (1995). Google Scholar
Games, D. et. al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature373, 523–527 (1995). ArticleCASPubMed Google Scholar
LaFerla, F.M., Tinkle, B.T., Bieberich, C.J., Haudenschild, C.C. & Jay, G., Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genet.9, 21–30 (1995). ArticleCASPubMed Google Scholar
Hensley, K. et al. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Nail. Acad. Sci. USA91, 3270–3274 (1994). ArticleCAS Google Scholar
Butterfield, D.A., Hensley, K., Harris, M., Mattson, M. & Carney, J. . β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer's disease. Biochem. Biophys. Res. Comm.200, 710–715 (1994). ArticleCASPubMed Google Scholar
The SAM Model of Senescence, in Proceedings of the First International Conference on Senescence (ed. Takeda, T.) (Excerpta Medica, Amsterdam, 1994).
Kitado, H., Higuchi, K. & Takeda, T. Molecular genetic characterization of the senescence-accelerated mouse (SAM) strains. J. Gerontol.49, B247–254 (1994). ArticleCASPubMed Google Scholar
Teramoto, S., Fukuchi, Y., Uejima, Y., Ito, H. & Orimo, H. Age-related changes in GSH content of eyes in mice — a comparison of senescence-accelerated mouse (SAM) and C57BL/J mice. Comp. Biochem. Physiol.102, 693–696 (1992). ArticleCAS Google Scholar
Uejima, Y., Fukuchi, Y, Teramoto, S., Tabata, R. & Orimo, H. Age changes in visceral content of glutathione in the senescence accelerated mouse (SAM). Mech. Ageing Dev.67, 129–139 (1993). ArticleCASPubMed Google Scholar
Liu, J. & Mori, A. Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech. Ageing Devel.71, 23–30 (1993). ArticleCAS Google Scholar
Teramoto, S., Fukuchi, Y., Uejima, Y., Teramoto, K Orimo, H. Biochemical characteristics of lungs in senescence-accelerated mouse (SAM). Eur. Respir. J.8, 450–456 (1995). ArticleCASPubMed Google Scholar
Martin, G.M. Genetic modulation of the senescent phenotype of Homo sapiens. Exp. Gerontol.31, 49–59 (1996). ArticleCASPubMed Google Scholar
Martin, G.M. Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects.14, 5–39 (1978). CASPubMed Google Scholar
Martin, G.M. Syndromes of accelerated aging. Natl. Cane. Inst. Monogr.60, 241–247 (1982). CAS Google Scholar
Rose, M.R. in Evolutionary Biology of Aging. (Oxford University Press, New York, 1991).
Schachter, F. et al. Genetic associations with human longevity at the APOE and ACE loci. Nature Genet.6, 29–32 (1994). ArticleCASPubMed Google Scholar
Oliver, C.N., Ahn, B.W., Moerman, E.J., Goldstein, S. & Stadtman, E.R. Age-related changes in oxidized proteins. J. Biol. Chem.262, 5488–5491 (1987). ArticleCASPubMed Google Scholar
Cristofalo, V.J. & Pignolo, R.J. Cell culture as a model. in Handbook of Physiology, (ed Masoro, E.J.) 53–82 (Oxford University Press, New York, 1995). Google Scholar
Martin, G.M. Clonal attenuation: causes and consequences. J. Gerontol.48, 6171–172 (1993). Article Google Scholar
Oshima, J., Campisi, J., Tannock, T.C.A. & Martin, G.M. Regulation of c-fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J. Cell. Physio.162, 277–283 (1995). ArticleCAS Google Scholar
Schulz, V.P. et al. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum. Genet, (in the press).
Fukuchi, K., Martin, G.M. & Monnat, R.J.,Jr., Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc. Natl. Acad. Sci. USA86, 5893–5897 (1989). ArticleCASPubMedPubMed Central Google Scholar
Yu, C.E. et al. Positional cloning of the Werner's syndrome gene. Science272, 258–262 (1996). ArticleCASPubMed Google Scholar
Carney, J.M. et al. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc. Natl. Acad. Sci. USA88, 3633–3636 (1991). ArticleCASPubMedPubMed Central Google Scholar
Schapira, A.H. Oxidative stress in Parkinson's disease. Neuropathol. Appl.21, 3–9 (1995). ArticleCAS Google Scholar
Beal, M.F., Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol.38, 357–566 (1995). ArticleCASPubMed Google Scholar
Benzi, G. & Moretti, A. Are reactive oxygen species involved in Alzheimer's disease?. Neurobiol.Aging.16, 661–674 (1995). CAS Google Scholar
Sagara, Y., Dargusch, R., Klier, F.G., Schubert, D. & Behl, C. Increased antioxidant enzyme activity in amyloid beta protein-resistant cells. J. Neurosci.16, 497–505 (1996). ArticleCASPubMedPubMed Central Google Scholar
Thomas, T., Thomas, G., McLendon, C, Sutton, T & Mullan, M. β-amyloid-mediated vasoactivity and vascular endothelial damage. Nature380, 168–171 (1996). ArticleCASPubMed Google Scholar
Wallace, D.C., Shoffner, J.M., Trounce, I. & Brown, M.D. Mitochondrial DNA mutations in human degenerative diseases and aging. Biochem. Biophys. Acta.1271, 141–151 (1995). PubMed Google Scholar
Schindler, D. & Hoehn, H. Fanconi anemia mutation causes cellular susceptibility to ambient oxygen. Am. J. Hum. Genet.43, 429–435 (1988). CASPubMedPubMed Central Google Scholar
Degan, P. et al. In vivo accumulation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi's anaemia families. Carcinogenesis16, 735–741 (1995). ArticleCASPubMed Google Scholar
Bondy, S.C. & Guo, S.X. Effect of ethanol treatment on indices of cumulative oxidative stress. Euro. J. Pharmacol.270, 349–55 (1994). CAS Google Scholar
Volm, M., Koomagi, R., Mattern, J. & Stammler, G. Heat shock (hsp70) and resistance proteins in non-small cell lung carcinomas. Cancer Lett.96, 195–200 (1995). Article Google Scholar
Carey, J.R., Liedo, P., Orozco, D. Vaupel, J.W. Slowing of mortality rates at older ages in large medfly cohorts. Science258, 457–461 (1992). ArticleCASPubMed Google Scholar
Curtsinger, J.W., Fukui, H.H., Townsend, D.R. & Vaupel, J.W. Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science268, 461–463 (1992). Article Google Scholar
Martin, G.M. Genetic and environmental modulations of chromosomal stability: their roles in aging and oncogenesis. Ann. NY Acad. Sci.621, 401–17 (1991). ArticleCASPubMed Google Scholar
Duhon, S.A., Murakami, S. & Johnson, T.E. Direct isolation of longevity mutants in the nematode, Caenorhabditis elegans. Dev. Genet.(in the press).
Graves, J.L., Luckinbill, L.S. & Nichols, A. Flight duration and wing beat frequency in long- and short-lived Drosophila melanogaster. J. Insect Physiol.34, 1021–1026 (1988). Article Google Scholar
Graves, J.L., Toolson, E.C., Jeong, C., Vu, L.N. & Rose, M.R. Desiccation, flight, glycogen and postponed senescence in Drosophila melanogaster. Physiol. Zool.65, 268–286 (1992). ArticleCAS Google Scholar
Ingram, D.K., Weindruch, R., Spangler, E.L., Freeman, J.R. & Walford, R.L. Dietary restriction benefits learning and motor performance of aged mice. J. Gerontol.42, 78–81 (1987). ArticleCASPubMed Google Scholar
Johnson, T.E. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA84, 3777–3781 (1987). ArticleCASPubMedPubMed Central Google Scholar