Genetic analysis of ageing: role of oxidative damage and environmental stresses (original) (raw)

References

  1. Medawar, P.B. Old age and natural death. Modern Quarterly. 1, 30–56 (1946).
    Google Scholar
  2. Medawar, P.B. An Unsolved Problem of Biology (H.K. Lewis, London, 1952).
    Google Scholar
  3. Hamilton, W.D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).
    Article CAS PubMed Google Scholar
  4. Charlesworth, B. Evolution in Age-Structured Populations, 2nd Edn. (Cambridge University Press, Cambridge, 1994).
  5. Williams, G.C., Pleiotropy, natural selection, and the evolution of senescence. Evolution. 11, 398–411 (1957).
    Article Google Scholar
  6. Rose, M.R. & Charlesworth, B. A test of evolutionary theories of senescence. Nature. 287, 141–142 (1980).
    Article CAS PubMed Google Scholar
  7. Hughes, K.A. & Charlesworth, B. A genetic analysis of senescence in Drosophila. Nature 367, 64–66 (1994).
    Article CAS PubMed Google Scholar
  8. Wilson, P.W.F. et al. Apolipoprotein E alleles, dyslipidemia, and coronary heart diseasa. JAMA. 272, 1666–1671 (1994).
    Article CAS PubMed Google Scholar
  9. Saunders, A.M. et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467–1472 (1993).
    Article CAS PubMed Google Scholar
  10. Rose, M.R. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38, 1004–1010 (1984).
    Article PubMed Google Scholar
  11. Luckinbill, L.S., Arking, R., Clare, M.J., Cirocco, W.C. & Buck, S.A. Selection for delayed senescence in Drosophila melanogaster. Evolution 38, 996–1003 (1984).
    Article PubMed Google Scholar
  12. Zwaan, B., Bijlmsa, R. & Hoekstra, R.F. Direct selection on life span in Drosophila melanogaster. Evolution 49, 649–659 (1995a).
    Article PubMed Google Scholar
  13. Partridge, L. & Fowler, K. Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 46, 76–91 (1992).
    Article PubMed Google Scholar
  14. Shook, D.R., Brooks, A. & Johnson, T.E. Mapping quantitative trait specifying hermaphrodite survival or self fertility in the nematode Caenorhabditis elegans. Genetics 142, 801–17 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  15. Albin, R.L. Antagonistic pleiotropy, mutation accumulation, and human genetic disease. in Genetics and Evolution of Aging.(Eds Rose, M.R. & Finch, C.E.) 307–314 (Kluwer Academic Publishers, Amsterdam, 1994).
    Chapter Google Scholar
  16. Finch, C.E. & Rose, M.R. Hormones and the physiological architecture of life history evolution. Q. Rev. Biol. 70, 1–52 (1995).
    Article CAS PubMed Google Scholar
  17. Kirkwood, T.B.L. The disposable soma theory of aging. in Genetic Effects on Aging II(ed.Harrison, D.E.) 9–19 (Telford Press, Caldwell, NJ, 1990).
    Google Scholar
  18. Wilding, G. Endocrine control of prostate cancer. Cancer Surv. 23, 43–62 (1995).
    CAS PubMed Google Scholar
  19. Adams, M.R., Williams, J.K. & Kaplan, J.R. Effects of androgens on coronary artery aterosclerosis and atherosclerosis-related impairment of vascular responsiveness. Arterioscl. Thromb. Vasc. Biol. 15, 562–570 (1995).
    Article CAS PubMed Google Scholar
  20. Grossman, C.J. Interactions between the gonadal steroids and the immune system. Science 227, 257–261 (1985).
    Article CAS PubMed Google Scholar
  21. Cerami, A. Hypothesis: glucose as a mediator of aging. J. Am. Geriatr. Soc. 33, 626–634 (1985).
    Article CAS PubMed Google Scholar
  22. Monnier, V.M., Sell, D.R., Ramanakoppa, J. & S. Miyata, Mechanisms of protection against damage mediated by the Maillard reaction in aging. Gerontol. 37, 152–165 (1991).
    Article CAS Google Scholar
  23. Dickman, C.R. & Braithwaite, R.W. Postmating mortality of males in the dasyurid marsupials, Dasyurus and Parantechinus. J. Mamm. 73, 143–147 (1992).
    Article Google Scholar
  24. Austad, S.N. Retarded senescence in an insular population of Virginia (Didelphis virginiana) opossums. J. Zool. Lond. 229, 695–708 (1993).
    Article Google Scholar
  25. Kenyon, C. Ponce d-elegans: genetic quest for the fountain of youth. Cell. 84, 501–504 (1996).
    Article CAS PubMed Google Scholar
  26. Kirkwood, T.B.L. & Cremer, T. Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress. Hum. Genet. 60, 101–121 (1982).
    Article CAS PubMed Google Scholar
  27. Rothstein, M. Biochemical Approaches to Aging. (Academic Press, New York, 1982).
    Google Scholar
  28. Van Remmen, H., Ward, W.F., Sabia, R.V. & Richardson, A. Gene expression and protein degradation. in Handbook of Physiology (ed Masoro, E.J.) 171–234 (Oxford University Press, New York, 1995).
  29. Swisshelm, K., Disteche, C.M., Thorvaldsen, J., Nelson, A. & Salk, D. Age-related increase in methylation of ribosomal genes and inactivation of chromosome-specific rRNA gene clusters in mouse. Mutat. Res. 237, 131–146 (1990).
    Article CAS PubMed Google Scholar
  30. Sell, D.R. & Monnier, V.M. Aging of long-lived proteins: extracellular matrix (collagens, elastins, proteoglycans) and lens crystallins. in Aging (ed. Masoro, E.J.) (Oxford University Press, New York, 1995).
  31. Harman, D. Free-radical theory of aging: increasing the functional life span. Ann. NY Acad. Sci. 717, 1–15 (1994).
    Article CAS PubMed Google Scholar
  32. Swartz, H.M. & Mäder, K. Free radicals in aging: theories, facts, and artifacts. in Molecular Aspects of Aging (eds Esser, K. & Martin, G.M.) (John Wiley & Sons Ltd., Chichester, England, 1995).
    Google Scholar
  33. Stadtman, E.R. Protein oxidation and aging. Science 267, 1220–1224 (1992).
    Article Google Scholar
  34. Newcomb, T.G. & Loeb, L.A. Oxidative DNA damage and mutagenesis. in DNA Damage and Repair (eds Nickoloff, J. & Hoekstra, M.) (Human Press, Totowa, New Jersey, 1996).
    Google Scholar
  35. Shigenaga, M.K., Hagen, T.M. & Ames, B.N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA 91, 10771–10778 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  36. Griffiths, A.J.F. Fungal senescence. Annu. Rev. Genet. 26, 351–372 (1992).
    Article CAS PubMed Google Scholar
  37. Osiewacz, H.D. Aging and genetic instabilities. in Molecular Aspects of Aging (eds Esser, K & Martin, G. M.) 29–44 (John Wiley and Sons, Chichester, 1995).
    Google Scholar
  38. Jazwinski, S.M., Handbook of the Biology of Aging, 4th edn. (eds Rowe,J. W. & Schneider, E. L.) 39–54 (Academic Press, New York, 1996).
    Google Scholar
  39. Munkres, K.D., Genetic coregulation of longevity and antioxienzymes in Neurospora crassa. Free Rad. Biol. Med. 8, 355–361 (1990).
    Article CAS PubMed Google Scholar
  40. Kennedy, B.K., Austriaco, N.R.,Jr, Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell. 80, 485–496 (1995).
    Article CAS PubMed Google Scholar
  41. D'Mello, N.P. et al. Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J. Biol. Chem. 269, 15451–15459 (1994).
    Article CAS PubMed Google Scholar
  42. Jazwinski, S.M. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica. 91, 35–51 (1993).
    Article CAS PubMed Google Scholar
  43. Sun, J., Kale, S.P., Childress, A.M., Pinswasdi, C. & Jazwinski, S.M. Divergent roles of RAS1 and RAS2 in yeast longevity. J. Biol. Chem. 269, 18638–18645 (1994).
    Article CAS PubMed Google Scholar
  44. Kale, S.P. & Jazwinski, S.M. Differential response to UV stress and DNA damage during the yeast replicative life span. Dev. Genet. (in the press).
  45. Bertrand, H. Senescence is coupled to induction of an oxidative phosphorylation stress response by mitochondrial MA mutations in Neurospora. Can. J. Bot. 73, S198–S204 (1995).
    Article CAS Google Scholar
  46. Munkres, K.D. & Furtek, C. A. Selection of conidial longevity mutants of Neurospora crassa.Mech. Ageing Dev. 25, 47–62 (1984).
    Article CAS PubMed Google Scholar
  47. Munkres, K.D. Selection and analysis of superoxide dismutase mutants of Neurospora. Free Rad. Biol. Med. 13, 305–318 (1992).
    Article CAS PubMed Google Scholar
  48. Longo, V.D., Gralla, E.B. & Valentine, J.S. Superoxide dismutase activity is essential for respiratory growth and stationary phase survival in Saccharomyces cerevisiae: in vivo mitochondrial production of toxic oxygen species under normal aeration. J. Biol. Chem. (in the press).
  49. Wood, W.B. The Biology of Caenorhabditis elegans (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1988).
  50. Lithgow, G.J. in Handbook of the Biology of Aging, 4th Edn. (eds Rowe, J. W. & Schneider, E. L.) 55–73 (Academic Press, New York, 1996).
    Google Scholar
  51. Johnson, T.E. & Hutchinson, E.W. Absence of strong heterosis for life span and other life history traits in Caenorhabditis elegans. Genetics 134, 465–474 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  52. Friedman, D.B. & Johnson, T.E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75–86 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  53. Friedman, D.B. & Johnson, T.E. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J. Gerontol. Bio. Sci. 43, B102–B109 (1988).
    Article CAS Google Scholar
  54. Lithgow, G.J., White, T.M., Melov, S. & Johnson, T.E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. USA 92, 7540–7544 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  55. Larsen, P.L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 90, 8905–8909 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  56. Vanfleteren, J.R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J. 292, 605–608 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  57. Murakami, S. & Johnson, T.E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics (in the press).
  58. Jurkiewicz, B.A. & Buettner, G.R. Ultraviolet light-induced free radical formation in skin: An electron paramagnetic resonance study. Photochem. PhotoBiol. 59, 1–4 (1994).
    Article CAS PubMed Google Scholar
  59. Godar, D.E., Thomas, D.P., Miller, S.A. & Lee, W. Long-wave length UVA radiation induced oxidative stress, cytoskeletal damage and hemolysis. Photochem. PhotoBiol. 57, 1018–1026 (1993).
    Article CAS PubMed Google Scholar
  60. Johnson, T.E. The increased life span of age-1 mutants in Caenorhabditis elegans results from lowering the Gompertz rate of aging. Science 249, 908–12 (1990).
    Article CAS PubMed Google Scholar
  61. Duhon, S.A. & Johnson, T.E. Movement as an index of vitality: comparing wild type and the age-1 mutant of Caenorhabditis elegans. J. Gerontol. Biol. Sci. 50, B254–B261 (1995).
    Article CAS Google Scholar
  62. Vanfleteren, J.F. & DeVreese, A. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB. J. 9, 1355–1361 (1996).
    Article Google Scholar
  63. Melov, S., Lithgow, G.J., Fischer, D.R., Tedesco, P.M. & Johnson, T.E. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucl. Acids Res. 23, 1419–1425 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  64. Riddle, D. The dauer larva, in The Nematode Caenorhabditis elegans. (ed. Wood, W. B.) 393–412 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988).
  65. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C.elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).
    Article CAS PubMed Google Scholar
  66. Larsen, P.L., Albert, P.S. & Riddle, D.L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139, 1567–1583 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  67. Wong, A., Boutis, P. & Hekimi, S. Mutations in the clk-1 gene of Caenorhabditis elegans_affect developmental and behavioral timing. Genetics 139, 1247–1259 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  68. Van Voorhies, W.A. Production of sperm reduces nematode lifespan. Nature 360, 456–458 (1992).
    Article CAS PubMed Google Scholar
  69. Gems, D. & Riddle, D.R. Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature 379, 723–25 (1996).
    Article CAS PubMed Google Scholar
  70. Ebert, R.H. et al. Longevity-determining genes in Caenorhabditis elegans: chromosomal mapping of multiple noninteractive loci. Genetics 135, 1003–1010 (1993).
    Article CAS PubMed Google Scholar
  71. Wattiaux, J.M. Cumulative parental effects in Drosophila subobscura. Evolution 22, 406–421 (1968).
    Article CAS PubMed Google Scholar
  72. Wattiaux, J.M. Parental age effects in Drosophila pseudoobscura. Exp. Gerontol. 3, 55–61 (1968b).
    Article CAS PubMed Google Scholar
  73. Service, P.M., Hutchinson, E.W., MacKinley, M.D. & Rose, M.R. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol. Zool. 58, 380–389 (1985).
    Article Google Scholar
  74. Service, P.M. Physiological mechanisms of increased stress resistance in Drosophila melanogaster. Physiol. Zool. 60, 321–326 (1987).
    Article Google Scholar
  75. Arking, R., Buck, S., Berrios, A., Dwyer, S. & Baker, G.T. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev. Genet. 12, 362–370 (1991).
    Article CAS PubMed Google Scholar
  76. Rose, M.R., Vu, L.N., Park, S.U. & Graves, J.L. Jr., Selection on stress resistance increases longevity in Drosophila melanogaster. Exp. Gerontol. 27, 241–250 (1992).
    Article CAS PubMed Google Scholar
  77. Hillesheim, E. & Stearns, S.C. Correlated responses in life-history traits to artificial selection for body weight in Drosophila melanogaster. Evolution 46, 745–752 (1992).
    Article PubMed Google Scholar
  78. Zwaan, B., Bujlsma, R. & Hoekstra, R.F. Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses. Evolution 49, 635–648 (1995).
    Article PubMed Google Scholar
  79. Buck, S., Wells, R.A., Dudas, S.R., Baker, G.T. & Arking, R. Chromosomal localization and regulation of the longevity determinant genes in a selected strain of Drosophila melanogaster. Heredity 71, 11–22 (1993).
    Article PubMed Google Scholar
  80. Dudas, S.P. & Arking, R. A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J. Gerontol. Biol. Sci. 50A, B117–B127 (1995).
    Article CAS Google Scholar
  81. Johnson, T.E., Lithgow, G.J., Murakami, S., Duhon, S.A. & Shook, D.R. Genetics of aging and longevity in lower organisms. in Cellular Aging and Cell Death (eds Holbrook, N. & Martin, G. R.) 1–17 (John Wiley and Sons, NY, 1996).
    Google Scholar
  82. Hutchinson, E.W. & Rose, M.R. Quantitative genetic analysis of postponed aging in Drosophila melanogaster. in Genetic Effects of Aging II. (ed. Harrison, D.L.) 65–85 felford Press, Caldwell, NJ, 1990).
  83. Fleming, J.E., Spicer, G.S., Garrison, R.C. & Rose, M.R. Two-dimensional protein electrophoretic analysis of postponed aging in Drosophila. Genetica 91, 183–198 (1993).
    Article CAS PubMed Google Scholar
  84. Clare, M.J. & Luckinbill, L.S. The effects of gene-environment interaction on the expression of longevity. Heredity 55, 19–26 (1985).
    Article PubMed Google Scholar
  85. Service, P.M., Hutchinson, E.W. & Rose, M.R. Multiple genetic mechanisms for the evolution of senescence in Drosophila melanogaster. Evolution 42, 708–716 (1988).
    Article CAS PubMed Google Scholar
  86. Buck, S. et al. Larval regulation of adult longevity in a genetically-selected long-lived strain of Drosophila. Heredity 71, 23–32 (1993).
    Article PubMed Google Scholar
  87. Hilliker, A.J., Dufy, B., Evans, D. & Phillips, J.P. Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc. Natl. Acad. Sci. USA 89, 4343–4347 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  88. Griswold, C.M., Matthews, A.L., Bewley, K.E. & Mahaffey, J.W. Molecular characterization and rescue of acatalasemic mutants of Drosophila melanogaster. Genetics 134, 781–788 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  89. Orr, W.C. & Sohal, R.C. Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 (1994).
    Article CAS PubMed Google Scholar
  90. Orr, W.C. & Sohal, R.C. The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys. 297, 35–41 (1992).
    Article CAS PubMed Google Scholar
  91. Orr, W.C. & Sohal, R.C. Effects of Cu-Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys. 301, 34–40 (1993).
    Article CAS PubMed Google Scholar
  92. Masoro, E.J. FRAR course on laboratory approaches to aging. Nutrition, including diet restriction, in mammals. Aging. 5, 269–275 (1993).
    CAS PubMed Google Scholar
  93. Gelman, R., Watson, A., Bronson, R. & Yunis, E. Murine chromosomal regions correlated with longevity. Genetics 118, 693–704 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  94. Covelli, V. et al. Inheritance of immune responsiveness, life span, and disease incidence in interline crosses of mice selected for high or low multispecific antibody production. J. Immunol. 142, 1224–1234 (1989).
    CAS PubMed Google Scholar
  95. Puel, A., Groot, P.C., Lathrop, M.G., Demant, P. & Mouton, D. Mapping of genes controlling quantitative antibody production in Biozzi mice. J. Immunol. 154, 5799–5805 (1995).
    CAS PubMed Google Scholar
  96. Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).
    Article CAS PubMed Google Scholar
  97. Mote, P.L., Grizzle, J.M., Walford, R.L. & Spindler, S.R. Aging alters hepatic expression of insulin receptor and c-jun mRNA in the mouse. Mutat. Res. 256, 7–12 (1991).
    Article CAS PubMed Google Scholar
  98. Yu, B.P. Antioxidant action of dietary restriction in the aging process. J. Nutr. Sci. Vitaminol. Tokyo. 39, S75–S83 (1993).
    Article CAS PubMed Google Scholar
  99. Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J. & Lal, H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 74, 121–133 (1994).
    Article CAS PubMed Google Scholar
  100. Sohal, R.S., Agarwal, S., Candas, M., Forster, M.J. & Lal, H. Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech. Ageing Dev. 76, 215–224 (1994).
    Article CAS PubMed Google Scholar
  101. Hass, B.S., Hart, R.W., Lu, M.H. & Lyn-Cook, B.D. Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat. Res. 295, 281–289 (1993).
    Article CAS PubMed Google Scholar
  102. Wolf, N.S., Penn, P.E., Jiang, D., Fei, R.G. Pendergrass, W.R. Caloric restriction: conservation of in vivo cellular replicative capacity accompanies life-span extension in mice. Exp. Cell Res. 217, 317–323 (1995).
    Article CAS PubMed Google Scholar
  103. Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J. & Ames, B.N. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl. Acad. Sci. USA 92, 4337–4341 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  104. Sundaresan, M., Zu-Xi, Y., Ferrans, V.J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).
    Article CAS PubMed Google Scholar
  105. Korsmeyer, S.J., Yin, X.M., Oltvai, Z.N., Veis-Novack, D.J. & Linette, G.P. Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochem. Biophys. Acta 1271, 63–66 (1995).
    PubMed Google Scholar
  106. Farlie, P.G., Dringen, R., Rees, S.M., Kannourakis, G. & .bcl-2 transgene expression can protect neurons against developmental and induced cell death. Proc. Natl. Acad. Sci. USA 92, 4397–4401 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  107. Czech, C., Masters, C. & Beyreuther, K. Alzheimer's disease and transgenic mice. J. Neural Transm. Suppl. 44, 219–230 (1994).
    CAS PubMed Google Scholar
  108. Hsiao, K.K., Loh, J., Nilsen, S. & Johannsdottir, R. Strain dependence of longevity and behavior in transgenic mice expressing mutant Alzheimer amyloid precursor protein. Soc. Neurosci. 21, 257 (1995).
    Google Scholar
  109. Games, D. et. al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373, 523–527 (1995).
    Article CAS PubMed Google Scholar
  110. LaFerla, F.M., Tinkle, B.T., Bieberich, C.J., Haudenschild, C.C. & Jay, G., Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genet. 9, 21–30 (1995).
    Article CAS PubMed Google Scholar
  111. Hensley, K. et al. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Nail. Acad. Sci. USA 91, 3270–3274 (1994).
    Article CAS Google Scholar
  112. Butterfield, D.A., Hensley, K., Harris, M., Mattson, M. & Carney, J. . β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer's disease. Biochem. Biophys. Res. Comm. 200, 710–715 (1994).
    Article CAS PubMed Google Scholar
  113. The SAM Model of Senescence, in Proceedings of the First International Conference on Senescence (ed. Takeda, T.) (Excerpta Medica, Amsterdam, 1994).
  114. Kitado, H., Higuchi, K. & Takeda, T. Molecular genetic characterization of the senescence-accelerated mouse (SAM) strains. J. Gerontol. 49, B247–254 (1994).
    Article CAS PubMed Google Scholar
  115. Teramoto, S., Fukuchi, Y., Uejima, Y., Ito, H. & Orimo, H. Age-related changes in GSH content of eyes in mice — a comparison of senescence-accelerated mouse (SAM) and C57BL/J mice. Comp. Biochem. Physiol. 102, 693–696 (1992).
    Article CAS Google Scholar
  116. Uejima, Y., Fukuchi, Y, Teramoto, S., Tabata, R. & Orimo, H. Age changes in visceral content of glutathione in the senescence accelerated mouse (SAM). Mech. Ageing Dev. 67, 129–139 (1993).
    Article CAS PubMed Google Scholar
  117. Liu, J. & Mori, A. Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech. Ageing Devel. 71, 23–30 (1993).
    Article CAS Google Scholar
  118. Teramoto, S., Fukuchi, Y., Uejima, Y., Teramoto, K Orimo, H. Biochemical characteristics of lungs in senescence-accelerated mouse (SAM). Eur. Respir. J. 8, 450–456 (1995).
    Article CAS PubMed Google Scholar
  119. Martin, G.M. Genetic modulation of the senescent phenotype of Homo sapiens. Exp. Gerontol. 31, 49–59 (1996).
    Article CAS PubMed Google Scholar
  120. Martin, G.M. Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects. 14, 5–39 (1978).
    CAS PubMed Google Scholar
  121. Martin, G.M. Syndromes of accelerated aging. Natl. Cane. Inst. Monogr. 60, 241–247 (1982).
    CAS Google Scholar
  122. Rose, M.R. in Evolutionary Biology of Aging. (Oxford University Press, New York, 1991).
  123. Schachter, F. et al. Genetic associations with human longevity at the APOE and ACE loci. Nature Genet. 6, 29–32 (1994).
    Article CAS PubMed Google Scholar
  124. Strittmatter, W.J. & Roses, A.D. Apolipoprotein E and Alzheimer disease. Proc. Natl. Acad. Sci. USA 92, 4725–4727 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  125. Oliver, C.N., Ahn, B.W., Moerman, E.J., Goldstein, S. & Stadtman, E.R. Age-related changes in oxidized proteins. J. Biol. Chem. 262, 5488–5491 (1987).
    Article CAS PubMed Google Scholar
  126. Cristofalo, V.J. & Pignolo, R.J. Cell culture as a model. in Handbook of Physiology, (ed Masoro, E.J.) 53–82 (Oxford University Press, New York, 1995).
    Google Scholar
  127. Martin, G.M. Clonal attenuation: causes and consequences. J. Gerontol. 48, 6171–172 (1993).
    Article Google Scholar
  128. Oshima, J., Campisi, J., Tannock, T.C.A. & Martin, G.M. Regulation of c-fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J. Cell. Physio. 162, 277–283 (1995).
    Article CAS Google Scholar
  129. Schulz, V.P. et al. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum. Genet, (in the press).
  130. Fukuchi, K., Martin, G.M. & Monnat, R.J.,Jr., Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc. Natl. Acad. Sci. USA 86, 5893–5897 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  131. Yu, C.E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).
    Article CAS PubMed Google Scholar
  132. Carney, J.M. et al. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc. Natl. Acad. Sci. USA 88, 3633–3636 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  133. Schapira, A.H. Oxidative stress in Parkinson's disease. Neuropathol. Appl. 21, 3–9 (1995).
    Article CAS Google Scholar
  134. Beal, M.F., Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–566 (1995).
    Article CAS PubMed Google Scholar
  135. Benzi, G. & Moretti, A. Are reactive oxygen species involved in Alzheimer's disease?. Neurobiol. Aging. 16, 661–674 (1995).
    CAS Google Scholar
  136. Sagara, Y., Dargusch, R., Klier, F.G., Schubert, D. & Behl, C. Increased antioxidant enzyme activity in amyloid beta protein-resistant cells. J. Neurosci. 16, 497–505 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  137. Thomas, T., Thomas, G., McLendon, C, Sutton, T & Mullan, M. β-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380, 168–171 (1996).
    Article CAS PubMed Google Scholar
  138. Wallace, D.C., Shoffner, J.M., Trounce, I. & Brown, M.D. Mitochondrial DNA mutations in human degenerative diseases and aging. Biochem. Biophys. Acta. 1271, 141–151 (1995).
    PubMed Google Scholar
  139. Schindler, D. & Hoehn, H. Fanconi anemia mutation causes cellular susceptibility to ambient oxygen. Am. J. Hum. Genet. 43, 429–435 (1988).
    CAS PubMed PubMed Central Google Scholar
  140. Degan, P. et al. In vivo accumulation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi's anaemia families. Carcinogenesis 16, 735–741 (1995).
    Article CAS PubMed Google Scholar
  141. Bondy, S.C. & Guo, S.X. Effect of ethanol treatment on indices of cumulative oxidative stress. Euro. J. Pharmacol. 270, 349–55 (1994).
    CAS Google Scholar
  142. Volm, M., Koomagi, R., Mattern, J. & Stammler, G. Heat shock (hsp70) and resistance proteins in non-small cell lung carcinomas. Cancer Lett. 96, 195–200 (1995).
    Article Google Scholar
  143. Carey, J.R., Liedo, P., Orozco, D. Vaupel, J.W. Slowing of mortality rates at older ages in large medfly cohorts. Science 258, 457–461 (1992).
    Article CAS PubMed Google Scholar
  144. Curtsinger, J.W., Fukui, H.H., Townsend, D.R. & Vaupel, J.W. Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science 268, 461–463 (1992).
    Article Google Scholar
  145. Martin, G.M. Genetic and environmental modulations of chromosomal stability: their roles in aging and oncogenesis. Ann. NY Acad. Sci. 621, 401–17 (1991).
    Article CAS PubMed Google Scholar
  146. Johnson, T.E. & Wood, W.B. Genetic analysis of life-span in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 79, 6603–6607 (1982).
    Article CAS PubMed PubMed Central Google Scholar
  147. Duhon, S.A., Murakami, S. & Johnson, T.E. Direct isolation of longevity mutants in the nematode, Caenorhabditis elegans. Dev. Genet.(in the press).
  148. Graves, J.L., Luckinbill, L.S. & Nichols, A. Flight duration and wing beat frequency in long- and short-lived Drosophila melanogaster. J. Insect Physiol. 34, 1021–1026 (1988).
    Article Google Scholar
  149. Graves, J.L., Toolson, E.C., Jeong, C., Vu, L.N. & Rose, M.R. Desiccation, flight, glycogen and postponed senescence in Drosophila melanogaster. Physiol. Zool. 65, 268–286 (1992).
    Article CAS Google Scholar
  150. Ingram, D.K., Weindruch, R., Spangler, E.L., Freeman, J.R. & Walford, R.L. Dietary restriction benefits learning and motor performance of aged mice. J. Gerontol. 42, 78–81 (1987).
    Article CAS PubMed Google Scholar
  151. Johnson, T.E. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 84, 3777–3781 (1987).
    Article CAS PubMed PubMed Central Google Scholar

Download references