Aebersold, R. & Patterson, S.D. Current problems and technical solutions in protein biochemistry. In PROTEINS: Analysis & Design (ed. Angeletti, R.H.) 3–120 (Academic, San Diego, 1998). Chapter Google Scholar
Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature377, 3–174 (1995). CASPubMed Google Scholar
Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science270, 467–470 (1995). ArticleCASPubMed Google Scholar
Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science270, 484–487 (1995). ArticleCASPubMed Google Scholar
Anderson, N.L., Hofmann, J.P., Gemmell, A. & Taylor, J. Global approaches to quantitative analysis of gene-expression patterns observed by use of two-dimensional gel electrophoresis. Clin. Chem.30, 2031–2036 (1984). CASPubMed Google Scholar
Tarroux, P., Vincens, P. & Rabilloud, T. HERMeS: A second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part V: Data analysis. Electrophoresis8, 187–199 (1987). ArticleCAS Google Scholar
Aebersold, R.H., Leavitt, J., Saavedra, R.A., Hood, L.E. & Kent, S.B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc. Natl. Acad. Sci.84, 6970–6974 (1987). ArticleCASPubMedPubMed Central Google Scholar
Vandekerckhove, J., Bauw, G., Puype, M., Van Damme, J. & Van Montagu, M. Protein-blotting on polybrene-coated glass-fiber sheets. Eur. J. Biochem.152, 9–19 (1985). ArticleCASPubMed Google Scholar
Tempst, P., Link, A.J., Riviere, L.R., Fleming, M. & Elicone, C. Internal sequence analysis of proteins separated on polyacrylamide gels at the submicrogram level: improved methods, applications and gene cloning strategies. Electrophoresis11, 537–553 (1990). ArticleCASPubMed Google Scholar
Adams, M.D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science252, 1651–1656 (1991). ArticleCASPubMed Google Scholar
Adams, M.D., Kerlavage, A.R., Fields, C. & Venter, J.C. 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nat. Genet.4, 256–267 (1993). ArticleCASPubMed Google Scholar
Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science276, 1268–1272 (1997). ArticleCASPubMed Google Scholar
Bonaldo, M.F., Lennon, G. & Soares, M.B. Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res.6, 791–806 (1996). ArticleCASPubMed Google Scholar
Goffeau, A. et al. Life with 6000 genes. Science274, 563–567 (1996). Article Google Scholar
Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticleCASPubMed Google Scholar
Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. & Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science246, 64–71 (1989). ArticleCASPubMed Google Scholar
Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem.60, 2299–2301 (1988). ArticleCASPubMed Google Scholar
Tanaka, K., Ido, Y., Akita, S., Yoshida, Y. & Yoshida, T. Detection of high mass molecules by laser desorption time-of-flight mass spectrometry. In Proc. 2nd Japan-China Joint Symp. Mass Spectrom. (eds. Matsuda, H. & Xiao-tian, L.) 185–188 (Osaka, Japan, 1987). Google Scholar
Tanaka, K. et al. Protein and polymer analyses up to m/z 100,000 by laser ionization TOF-MS. Rapid Commun. Mass Spectrom.2, 151–153 (1988). ArticleCAS Google Scholar
Henzel, W.J. et al. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA90, 5011–5015 (1993). ArticleCASPubMedPubMed Central Google Scholar
Mann, M., Hojrup, P. & Roepstorff, P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol. Mass Spectrom.22, 338–345 (1993). ArticleCASPubMed Google Scholar
Pappin, D.J.C., Hojrup, P. & Bleasby, A.J. Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol.3, 327–332 (1993). ArticleCASPubMed Google Scholar
James, P., Quadroni, M., Carafoli, E. & Gonnet, G. Protein identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun.195, 58–64 (1993). ArticleCASPubMed Google Scholar
Yates, J.R., III, Speicher, S., Griffin, P.R. & Hunkapiller, T. Peptide mass maps: a highly informative approach to protein identification. Anal. Biochem.214, 397–408 (1993). ArticleCASPubMed Google Scholar
Patterson, S.D. & Aebersold, R. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis16, 1791–1814 (1995). ArticleCASPubMed Google Scholar
Eng, J.K., McCormack, A.L. & Yates, J.R., III . An approach to correlate tandem mass spectral data pf peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom.5, 976–989 (1994). ArticleCASPubMed Google Scholar
Mann, M. Sequence database searching by mass spectrometric data. In Microcharacterization of Proteins (eds. Kellner, R., Lottspeich, F. & Meyer, H.E.) 223–245 (VCH, Weinheim, 1994). Chapter Google Scholar
Gras, R. & Muller, M. Computational aspects of protein identification by mass spectrometry. Curr. Opin. Mol. Ther.3, 526–532 (2001). CASPubMed Google Scholar
Wilm, M.S. & Mann, M. Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? Int. J. Mass Spectrom. Ion Proc.136, 167–180 (1994). ArticleCAS Google Scholar
Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass-spectrometry. Nature379, 466–469 (1996). ArticleCASPubMed Google Scholar
Scheele, G.A. Two-dimensional gel analysis of soluble proteins. Characterization of guinea pig exocrine pancreatic proteins. J. Biol. Chem.250, 5375–5385 (1975). CASPubMed Google Scholar
Klose, J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues: a novel approach to testing for induced point mutations in mammals. Humangenetik26, 231–243 (1975). CASPubMed Google Scholar
O'Farrell, P.H. High resolution two-dimensional gel electrophoresis of proteins. J. Biol. Chem.250, 4007–4021 (1975). CASPubMed Google Scholar
Anderson, N.G. & Anderson, L. The human protein index. Clin Chem.28, 739–748 (1982). CASPubMed Google Scholar
Garrels, J.I. The QUEST system for quantitative analysis of two-dimensional gels. J. Biol. Chem.264, 5269–5282 (1989). CASPubMed Google Scholar
Garrels, J.I. & Franza, B.R. Jr. Transformation-sensitive and growth-related changes of protein synthesis in REF52 cells. A two-dimensional gel analysis of SV40-, adenovirus-, and Kirsten murine sarcoma virus–transformed rat cells using the REF52 protein database. J. Biol. Chem.264, 5299–5312 (1989). CASPubMed Google Scholar
Garrels, J.I. & Franza, B.R., Jr. The REF52 protein database. Methods of database construction and analysis using the QUEST system and characterizations of protein patterns from proliferating and quiescent REF52 cells. J. Biol. Chem.264, 5283–5298 (1989). CASPubMed Google Scholar
Anderson, N.L., Matheson, A.D. & Steiner, S. Proteomics: applications in basic and applied biology. Curr. Opin. Biotechnol.11, 408–412 (2000). ArticleCASPubMed Google Scholar
Wilkins, M.R. et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotech. Gen. Eng. Rev.13, 19–50 (1995). Article Google Scholar
Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol.19, 1720–1730 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lai, R. et al. Prognostic value of plasma interleukin-6 levels in patients with chronic lymphocytic leukemia. Cancer95, 1071–1075 (2002). ArticleCASPubMed Google Scholar
Ritchie, R.F., Palomaki, G.E., Neveux, L.M. & Navolotskaia, O. Reference distributions for the negative acute-phase proteins, albumin, transferrin, and transthyretin: a comparison of a large cohort to the world's literature. J. Clin. Lab. Anal.13, 280–286 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gygi, S.P., Corthals, G.L., Zhang, Y., Rochon, Y. & Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA97, 9390–9395 (2000). ArticleCASPubMedPubMed Central Google Scholar
Corthals, G.L., Wasinger, V.C., Hochstrasser, D.F. & Sanchez, J.C. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis21, 1104–1115 (2000). ArticleCASPubMed Google Scholar
Gauss, C., Kalkum, M., Lowe, M., Lehrach, H. & Klose, J. Analysis of the mouse proteome. I. Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis20, 575–600 (1999). ArticleCASPubMed Google Scholar
Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics2, 3–10 (2002). ArticleCASPubMed Google Scholar
Herbert, B. Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis20, 660–663 (1999). ArticleCASPubMed Google Scholar
Gorg, A. et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis21, 1037–1053 (2000). ArticleCASPubMed Google Scholar
Unlu, M., Morgan, M.E. & Minden, J.S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis18, 2071–2077 (1997). ArticleCASPubMed Google Scholar
Rabilloud, T., Strub, J.M., Luche, S., van Dorsselaer, A. & Lunardi, J. A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics1, 699–704 (2001). ArticleCASPubMed Google Scholar
Appella, E., Padlan, E.A. & Hunt, D.F. Analysis of the structure of naturally processed peptides bound by class I and class II major histocompatibility complex molecules. EXS73, 105–119 (1995). CASPubMed Google Scholar
Hunt, D.F. et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science255, 1261–1263 (1992). ArticleCASPubMed Google Scholar
Henderson, R.A. et al. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science255, 1264–1266 (1992). ArticleCASPubMed Google Scholar
Hunt, D.F. et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science256, 1817–1820 (1992). ArticleCASPubMed Google Scholar
Yates, J.R., III, McCormack, A.L., Schieltz, D., Carmack, E. & Link, A. Direct analysis of protein mixtures by tandem mass spectrometry. J. Prot. Chem.16, 495–497 (1997). ArticleCAS Google Scholar
Spahr, C.S. et al. Simplification of complex peptide mixtures for proteomic analysis: reversible biotinylation of cysteinyl peptides. Electrophoresis21, 1635–1650 (2000). ArticleCASPubMed Google Scholar
Wolters, D.A., Washburn, M.P. & Yates, J.R. III . An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem.73, 5683–5690 (2001). ArticleCASPubMed Google Scholar
Link, A.J., Carmack, E. & Yates, J.R. III . A strategy for the identification of proteins localized to subcellular spaces: Application to E-coli periplasmic proteins. Int. J. Mass Spectrom. Ion Proc.160, 303–316 (1997). ArticleCAS Google Scholar
Link, A.J. et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol.17, 676–682 (1999). ArticleCASPubMed Google Scholar
Mintz, P.J., Patterson, S.D., Neuwald, A.F., Spahr, C.S. & Spector, D.L. Purification and biochemical characterization of interchromatin granule clusters. EMBO J.18, 4308–4320 (1999). ArticleCASPubMedPubMed Central Google Scholar
Patterson, S.D. et al. Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Diff.7, 137–144 (2000). ArticleCAS Google Scholar
Spahr, C.S. et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry I. Profiling an unfractionated tryptic digest. Proteomics1, 93–107 (2001). ArticleCASPubMed Google Scholar
Sanders, S.L., Jennings, J., Canutescu, A., Link, A.J. & Weil, P.A. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell. Biol.22, 4723–4738 (2002). ArticleCASPubMedPubMed Central Google Scholar
Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell11, 3425–3439 (2000). ArticleCASPubMedPubMed Central Google Scholar
Han, D.K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol.19, 946–951 (2001). ArticleCASPubMedPubMed Central Google Scholar
Simpson, R.J. et al. Proteomic analysis of the human colon carcinoma cell line (LIM 1215): Development of a membrane protein database. Electrophoresis21, 1707–1732 (2000). ArticleCASPubMed Google Scholar
Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000). ArticleCASPubMedPubMed Central Google Scholar
Washburn, M.P., Wolters, D. & Yates, J.R.r Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19, 242–247 (2001). ArticleCASPubMed Google Scholar
Patterson, S.D. Using MS fragment-ion data to identify proteins from large sequence databases. In Proteomics, Integrating Protein-based Tools and Applications for Drug Discovery (ed. Savage, L.M.) 127–135 (International Business Communications, Southborough, 1998). Google Scholar
Nuwaysir, L.M. & Stults, J.T. Electrospray ionization mass spectrometry of phosphopeptides isolated by on-line immobilized metal-ion affinity chromatography. J. Am. Soc. Mass Spectrom.4, 662–669 (1993). ArticleCASPubMed Google Scholar
Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.20, 301–305 (2002). ArticleCASPubMed Google Scholar
Hayes, B.K., Greis, K.D. & Hart, G.W. Specific isolation of _O_-Linked _N_-acetylglucosamine glycopeptides from complex mixtures. Anal. Biochem.228, 115–122 (1995). ArticleCASPubMed Google Scholar
Greis, K.D. et al. Selective detection and site-analysis of _O_-GlcNAc-modified glycopeptides by β-elimination and tandem electrospray mass spectrometry. Anal. Biochem.234, 38–49 (1996). ArticleCASPubMed Google Scholar
Davis, M.T. et al. Automated LC-LC-MS-MS platform using binary ion-exchange and gradient reversed-phase chromatography for improved proteomic analyses. J. Chromatogr. B752, 281–291 (2001). ArticleCAS Google Scholar
Gygi, S.P., Rist, B., Griffin, T.J., Eng, J. & Aebersold, R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome Res.1, 47–54 (2002). ArticleCASPubMed Google Scholar
Smith, R.D. et al. An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics2, 513–523 (2002). ArticleCASPubMed Google Scholar
De Leenheer, A.P. & Thienpont, L.M. Application of isotope dilution-mass spectrometry in clinical chemistry, pharmacokinetics, and toxicology. Mass Spectrom. Rev.11, 249–307 (1992). ArticleCAS Google Scholar
Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17, 994–999 (1999). ArticleCASPubMed Google Scholar
Munchbach, M., Quadroni, M., Miotto, G. & James, P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal. Chem.72, 4047–4057 (2000). ArticleCASPubMed Google Scholar
Cagney, G. & Emili, A. De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat. Biotechnol.20, 163–170 (2002). ArticleCASPubMed Google Scholar
Zhou, H., Ranish, J.A., Watts, J.D. & Aebersold, R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol.20, 512–515 (2002). ArticleCASPubMed Google Scholar
Mirgorodskaya, O.A. et al. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun. Mass Spectrom.14, 1226–1232 (2000). ArticleCASPubMed Google Scholar
Yao, X., Freas, A., Ramirez, J., Demirev, P.A. & Fenselau, C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem.73, 2836–2842 (2001). ArticleCASPubMed Google Scholar
Uttenweiler-Joseph, S., Neubauer, G., Christoforidis, S., Zerial, M. & Wilm, M. Automated de novo sequencing of proteins using the differential scanning technique. Proteomics1, 668–682 (2001). ArticleCASPubMed Google Scholar
Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA96, 6591–6596 (1999). ArticleCASPubMedPubMed Central Google Scholar
Conrads, T.P. et al. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal. Chem.73, 2132–2139 (2001). ArticleCASPubMed Google Scholar
Smith, R.D. et al. Rapid quantitative measurements of proteomes by Fourier transform ion cyclotron resonance mass spectrometry. Electrophoresis22, 1652–1668 (2001). ArticleCASPubMed Google Scholar
Washburn, M.P., Ulaszek, R., Deciu, C., Schieltz, D.M. & Yates, J.R. III . Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem.74, 1650–1657 (2002). ArticleCASPubMed Google Scholar
Siebert, R., Rosenwald, A., Staudt, L.M. & Morris, S.W. Molecular features of B-cell lymphoma. Curr. Opin. Oncol.13, 316–324 (2001). ArticleCASPubMed Google Scholar
Bangur, C.S. et al. Identification of genes over-expressed in small cell lung carcinoma using suppression subtractive hybridization and cDNA microarray expression analysis. Oncogene21, 3814–3825 (2002). ArticleCASPubMed Google Scholar
van't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415, 530–536 (2002). ArticleCAS Google Scholar
Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell9, 3273–3297 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell102, 109–126 (2000). ArticleCASPubMed Google Scholar
Roberts, C.J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science287, 873–880 (2000). ArticleCASPubMed Google Scholar
Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA95, 14863–14868 (1998). ArticleCASPubMedPubMed Central Google Scholar
Alter, O., Brown, P.O. & Botstein, D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA97, 10101–10106 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292, 929–934 (2001). ArticleCASPubMed Google Scholar
Anderson, L. & Seilhamer, J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis18, 533–537 (1997). ArticleCASPubMed Google Scholar
Futcher, B., Latter, G.I., Monardo, P., McLaughlin, C.S. & Garrels, J.I. A sampling of the yeast proteome. Mol. Cell. Biol.19, 7357–7368 (1999). ArticleCASPubMedPubMed Central Google Scholar
Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A. & Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol.43, 717–731 (2002). ArticleCASPubMed Google Scholar
Griffin, T.J. et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics1, 323–333 (2002). ArticleCASPubMed Google Scholar
Adam, G.C., Cravatt, B.F. & Sorensen, E.J. Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chem. Biol.8, 81–95 (2001). ArticleCASPubMed Google Scholar
Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat. Biotechnol.20, 805–809 (2002). ArticleCASPubMed Google Scholar
Greenbaum, D., Medzihradszky, K.F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol.7, 569–581 (2000). ArticleCASPubMed Google Scholar
Lopez-Otin, C. & Overall, C.M. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol.3, 509–519 (2002). ArticleCASPubMed Google Scholar
Bogyo, M., Shin, S., McMaster, J.S. & Ploegh, H.L. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem. Biol.5, 307–320 (1998). ArticleCASPubMed Google Scholar
Cravatt, B.F. & Sorensen, E.J. Chemical strategies for the global analysis of protein function. Curr. Opin. Chem. Biol.4, 663–668 (2000). ArticleCASPubMed Google Scholar
Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics1, 60–68 (2002). ArticleCASPubMed Google Scholar
Kidd, D., Liu, Y. & Cravatt, B.F. Profiling serine hydrolase activities in complex proteomes. Biochemistry40, 4005–4015 (2001). ArticleCASPubMed Google Scholar
Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA96, 14694–14699 (1999). ArticleCASPubMedPubMed Central Google Scholar
Withers, S.G. & Aebersold, R. Approaches to labeling and identification of active-site residues in glycosidases. Protein Sci.4, 361–372 (1995). ArticleCASPubMedPubMed Central Google Scholar
Haystead, C.M., Gregory, P., Sturgill, T.W. & Haystead, T.A. γ-Phosphate-linked ATP-sepharose for the affinity purification of protein kinases. Rapid purification to homogeneity of skeletal muscle mitogen-activated protein kinase kinase. Eur. J. Biochem.214, 459–467 (1993). ArticleCASPubMed Google Scholar
Turecek, F. Mass spectrometry in coupling with affinity capture-release and isotope-coded affinity tags for quantitative protein analysis. J. Mass Spectrom.37, 1–14 (2002). ArticleCASPubMed Google Scholar
Kumazaki, T., Terasawa, K. & Ishii, S. Affinity chromatography on immobilized anhydrotrypsin: general utility for selective isolation of C-terminal peptides from protease digests of proteins. J. Biochem.102, 1539–1546 (1987). ArticleCASPubMed Google Scholar
Fricker, L.D. et al. Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing. J. Neurosci.20, 639–648 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bures, E.J. et al. Identification of incompletely processed potential carboxypeptidase E substrates from CpE_fat_/CpE_fat_ mice. Proteomics1, 79–92 (2001). ArticleCASPubMed Google Scholar
Flint, A.J., Tiganis, T., Barford, D. & Tonks, N.K. Development of 'substrate-trapping' mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA94, 1680–1685 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zhang, S.H., Liu, J., Kobayashi, R. & Tonks, N.K. Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J. Biol. Chem.274, 17806–17812 (1999). ArticleCASPubMed Google Scholar
Belew, M. & Porath, J. Immobilized metal ion affinity chromatography. Effect of solute structure, ligand density and salt concentration on the retention of peptides. J. Chromatogr.516, 333–354 (1990). ArticleCASPubMed Google Scholar
Posewitz, M.C. & Tempst, P. Immobilized gallium(iii) affinity chromatography of phosphopeptides. Anal. Chem.71, 2883–2892 (1999). ArticleCASPubMed Google Scholar
Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol.19, 379–382 (2001). ArticleCASPubMed Google Scholar
Goshe, M.B. et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal. Chem.73, 2578–2586 (2001). ArticleCASPubMed Google Scholar
Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol.19, 375–378 (2001). ArticleCASPubMed Google Scholar
Deshaies, R.J. et al. Charting the protein complexome in yeast by mass spectrometry. Mol. Cell. Proteomics1, 3–10 (2002). ArticleCASPubMed Google Scholar
Hartwell, L.H., Hopfield, J.J., Leibler, S. & Murray, A.W. From molecular to modular cell biology. Nature402, C47–C52 (1999). ArticleCASPubMed Google Scholar
Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147 (2002). ArticleCASPubMed Google Scholar
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002). ArticleCASPubMed Google Scholar
von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature417, 399–403 (2002). ArticleCASPubMed Google Scholar
Ranish, J.A. et al. The study of macromolecular complexes by quantitative proteomics. Nat. Genet. (in the press).
Pease, A.C. et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA91, 5022–5026 (1994). ArticleCASPubMedPubMed Central Google Scholar
Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol.19, 342–347 (2001). ArticleCASPubMed Google Scholar
van Berkum, N.L. & Holstege, F.C. DNA microarrays: raising the profile. Curr. Opin. Biotechnol.12, 48–52 (2001). ArticleCASPubMed Google Scholar
Nadon, R. & Shoemaker, J. Statistical issues with microarrays: processing and analysis. Trends Genet.18, 265–271 (2002). ArticleCASPubMed Google Scholar
Haab, B.B., Dunham, M.J. & Brown, P.O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol.2, RESEARCH0004 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jenkins, R.E. & Pennington, S.R. Arrays for protein expression profiling: towards a viable alternative to two-dimensional gel electrophoresis? Proteomics1, 13–29 (2001). ArticleCASPubMed Google Scholar
Zhou, H., Roy, S., Schulman, H. & Natan, M.J. Solution and chip arrays in protein profiling. Trends Biotechnol.19, S34–S39 (2001). ArticleCASPubMed Google Scholar
Tramontano, A. et al. The making of the minibody: an engineered β-protein for the display of conformationally constrained peptides. J. Mol. Recognit.7, 9–24 (1994). ArticleCASPubMed Google Scholar
Martin, F. et al. Coupling protein design and in vitro selection strategies: improving specificity and affinity of a designed β-protein IL-6 antagonist. J. Mol. Biol.255, 86–97 (1996). ArticleCASPubMed Google Scholar
Koivunen, E., Wang, B. & Ruoslahti, E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology13, 265–270 (1995). CASPubMed Google Scholar
McConnell, S.J. & Hoess, R.H. Tendamistat as a scaffold for conformationally constrained phage peptide libraries. J. Mol. Biol.250, 460–470 (1995). ArticleCASPubMed Google Scholar
Nord, K., Nilsson, J., Nilsson, B., Uhlen, M. & Nygren, P.A. A combinatorial library of an α-helical bacterial receptor domain. Protein Eng.8, 601–608 (1995). ArticleCASPubMed Google Scholar
Choo, Y. & Klug, A. Designing DNA-binding proteins on the surface of filamentous phage. Curr. Opin. Biotechnol.6, 431–436 (1995). ArticleCASPubMed Google Scholar
Brody, E.N. et al. The use of aptamers in large arrays for molecular diagnostics. Mol. Diagn.4, 381–388 (1999). ArticleCASPubMed Google Scholar
Holt, L.J., Enever, C., de Wildt, R.M. & Tomlinson, I.M. The use of recombinant antibodies in proteomics. Curr. Opin. Biotechnol.11, 445–449 (2000). ArticleCASPubMed Google Scholar
Eklund, M., Axelsson, L., Uhlen, M. & Nygren, P.A. Anti-idiotypic protein domains selected from protein A-based affibody libraries. Proteins48, 454–462 (2002). ArticleCASPubMed Google Scholar
Cahill, D.J. Protein and antibody arrays and their medical applications. J. Immunol. Methods250, 81–91 (2001). ArticleCASPubMed Google Scholar
Walter, G., Bussow, K., Cahill, D., Lueking, A. & Lehrach, H. Protein arrays for gene expression and molecular interaction screening. Curr. Opin. Microbiol.3, 298–302 (2000). ArticleCASPubMed Google Scholar
Schweitzer, B. et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol.20, 359–365 (2002). ArticleCASPubMedPubMed Central Google Scholar
Houseman, B.T. & Mrksich, M. Towards quantitative assays with peptide chips: a surface engineering approach. Trends Biotechnol.20, 279–281 (2002). ArticleCASPubMed Google Scholar
Martzen, M.R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science286, 1153–1155 (1999). ArticleCASPubMed Google Scholar
Houseman, B.T., Huh, J.H., Kron, S.J. & Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol.20, 270–274 (2002). ArticleCASPubMed Google Scholar
Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nat. Genet.26, 283–289 (2000). ArticleCASPubMed Google Scholar
Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science290, 2306–2309 (2000). ArticleCASPubMed Google Scholar
Krylov, A.S., Zasedateleva, O.A., Prokopenko, D.V., Rouviere-Yaniv, J. & Mirzabekov, A.D. Massive parallel analysis of the binding specificity of histone-like protein HU to single- and double-stranded DNA with generic oligodeoxyribonucleotide microchips. Nucleic Acids Res.29, 2654–2660 (2001). ArticleCASPubMedPubMed Central Google Scholar
MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science289, 1760–1763 (2000). CASPubMed Google Scholar
Diehn, M., Eisen, M.B., Botstein, D. & Brown, P.O. Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat. Genet.25, 58–62 (2000). ArticleCASPubMed Google Scholar
Zong, Q., Schummer, M., Hood, L. & Morris, D.R. Messenger RNA translation state: the second dimension of high-throughput expression screening. Proc. Natl. Acad. Sci. USA96, 10632–10636 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science295, 1702–1705 (2002). ArticleCASPubMed Google Scholar
Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science285, 901–906 (1999). ArticleCASPubMed Google Scholar
Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature340, 245–246 (1989). ArticleCASPubMed Google Scholar
Tucker, C.L., Gera, J.F. & Uetz, P. Towards an understanding of complex protein networks. Trends Cell Biol.11, 102–106 (2001). ArticleCASPubMed Google Scholar
Bartel, P.L., Roecklein, J.A., SenGupta, D. & Fields, S. A protein linkage map of Escherichia coli bacteriophage T7. Nat. Genet.12, 72–77 (1996). ArticleCASPubMed Google Scholar
McCraith, S., Holtzman, T., Moss, B. & Fields, S. Genome-wide analysis of vaccinia virus protein-protein interactions. Proc. Natl. Acad. Sci. USA97, 4879–4884 (2000). ArticleCASPubMedPubMed Central Google Scholar
Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature403, 623–627 (2000). ArticleCASPubMed Google Scholar
Ito, T. et al. Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA97, 1143–1147 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA98, 4569–4574 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rain, J.C. et al. The protein-protein interaction map of Helicobacter pylori. Nature409, 211–215 (2001). ArticleCASPubMed Google Scholar
Walhout, A.J. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science287, 116–122 (2000). ArticleCASPubMed Google Scholar
Zhang, B., Kraemer, B., SenGupta, D., Fields, S. & Wickens, M. Yeast three-hybrid system to detect and analyze RNA-protein interactions. Methods Enzymol.318, 399–419 (2000). ArticleCASPubMed Google Scholar
Tucker, C.L. & Fields, S. A yeast sensor of ligand binding. Nat. Biotechnol.19, 1042–1046 (2001). ArticleCASPubMed Google Scholar
Heim, R., Prasher, D.C. & Tsien, R.Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA91, 12501–12504 (1994). ArticleCASPubMedPubMed Central Google Scholar
Guina, T. et al. Quantitative proteomic analysis of Pseudomonas aeruginosa indicates synthesis of quinolone signal in adaptation to cystic fibrosis airways. Proc. Natl. Acad. Sci. USA (in the press).
Ewing, B., Hillier, L., Wendl, M.C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res.8, 175–185 (1998). ArticleCASPubMed Google Scholar
Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res.8, 186–194 (1998). ArticleCASPubMed Google Scholar
Keller, A. et al. Experimental protein mixture for validating tandem mass spectral analysis. Omics6, 207–212 (2002). ArticleCASPubMed Google Scholar
Caprioli, R.M., Farmer, T.B. & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem.69, 4751–4760 (1997). ArticleCASPubMed Google Scholar
Stoeckli, M., Chaurand, P., Hallahan, D.E. & Caprioli, R.M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med.7, 493–496 (2001). ArticleCASPubMed Google Scholar
Collings, B.A., Sudakov, M. & Londry, F.A. Resonance shifts in the excitation of the n = 0, K = 1 to 6 quadrupolar resonances for ions confined in a linear ion trap. J. Am. Soc. Mass Spectrom.13, 577–586 (2002). ArticleCASPubMed Google Scholar
Medzihradszky, K.F. et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem.72, 552–558 (2000). ArticleCASPubMed Google Scholar
Marshall, A.G., Hendrickson, C.L. & Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev.17, 1–35 (1998). ArticleCASPubMed Google Scholar
Ullrich, B., Ushkaryov, Y.A. & Sudhof, T.C. Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron14, 497–507 (1995). ArticleCASPubMed Google Scholar
Petricoin, E.F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet359, 572–577 (2002). ArticleCASPubMed Google Scholar
Adam, B.L. et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res.62, 3609–3614 (2002). CASPubMed Google Scholar
Alon, U., Surette, M.G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature397, 168–171 (1999). ArticleCASPubMed Google Scholar
Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science296, 1466–1470 (2002). ArticleCASPubMed Google Scholar