Regional and mucosal memory T cells (original) (raw)
Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol.21, 139–176 (2003). ArticleCASPubMed Google Scholar
Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med.186, 1407–1418 (1997). CASPubMed CentralPubMed Google Scholar
Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999). ArticleCASPubMed Google Scholar
Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature410, 101–105 (2001). CASPubMed Google Scholar
Masopust, D., Vezys, V., Marzo, A.L. & Lefrançois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science291, 2413–2417 (2001). CASPubMed Google Scholar
Masopust, D. et al. Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J. Immunol.172, 4875–4882 (2004). CASPubMed Google Scholar
Klonowski, K.D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity20, 551–562 (2004). CASPubMed Google Scholar
Zammit, D.J., Turner, D.L., Klonowski, K.D., Lefrançois, L. & Cauley, L.S. Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity24, 439–449 (2006). ArticleCASPubMedPubMed Central Google Scholar
Marzo, A.L., Yagita, H. & Lefrançois, L. Cutting edge: migration to nonlymphoid tissues results in functional conversion of central to effector memory CD8 T cells. J. Immunol.179, 36–40 (2007). CASPubMed Google Scholar
Lee, Y.-T. et al. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J. Virol.85, 4085–4094 (2011). CASPubMed CentralPubMed Google Scholar
Iwasaki, A. Antiviral immune responses in the genital tract: clues for vaccines. Nat. Rev. Immunol.10, 699–711 (2010). CASPubMed CentralPubMed Google Scholar
Liu, L.M. & MacPherson, G.G. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J. Exp. Med.177, 1299–1307 (1993). CASPubMed Google Scholar
Huang, F.-P. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med.191, 435–444 (2000). CASPubMed CentralPubMed Google Scholar
Yrlid, U., Jenkins, C.D. & MacPherson, G.G. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions. J. Immunol.176, 4155–4162 (2006). CASPubMed Google Scholar
Perdomo, O.J. et al. Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J. Exp. Med.180, 1307–1319 (1994). CASPubMed Google Scholar
Jones, B.D., Ghori, N. & Falkow, S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer′s patches. J. Exp. Med.180, 15–23 (1994). CASPubMed Google Scholar
Neutra, M.R., Frey, A. & Kraehenbuhl, J.P. Epithelial M cells: gateways for mucosal infection and immunization. Cell86, 345–348 (1996). CASPubMed Google Scholar
Salazar-Gonzalez, R.M. et al. CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer′s patches. Immunity24, 623–632 (2006). ArticleCASPubMedPubMed Central Google Scholar
Teitelbaum, R. et al. The M cell as a portal of entry to the lung for the bacterial pathogen Mycobacterium tuberculosis. Immunity10, 641–650 (1999). CASPubMed Google Scholar
Jang, M.H. et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. USA101, 6110–6115 (2004). CASPubMedPubMed Central Google Scholar
Schubert, W.D. et al. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell111, 825–836 (2002). CASPubMed Google Scholar
Disson, O. et al. Modeling human listeriosis in natural and genetically engineered animals. Nat. Protoc.4, 799–810 (2009). CASPubMed Google Scholar
Lefrançois, L. & Obar, J.J. Once a killer, always a killer: from cytotoxic T cell to memory cell. Immunol. Rev.235, 206–218 (2010). PubMed CentralPubMed Google Scholar
Obar, J.J. & Lefrançois, L. Early events governing memory CD8+ T-cell differentiation. Int. Immunol.22, 619–625 (2010). CASPubMed CentralPubMed Google Scholar
Obar, J.J. & Lefrançois, L. Early signals during CD8+ T cell priming regulate the generation of central memory cells. J. Immunol.185, 263–272 (2010). CASPubMed Google Scholar
Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrançois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol.1, 426–432 (2000). CASPubMed Google Scholar
Kaech, S.M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol.4, 1191–1198 (2003). CASPubMed Google Scholar
Joshi, N.S. et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity27, 281–295 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sarkar, S. et al. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med.205, 625–640 (2008). CASPubMed CentralPubMed Google Scholar
Klonowski, K.D., Williams, K.J., Marzo, A.L. & Lefrançois, L. Cutting edge: IL-7-independent regulation of IL-7 receptor α expression and memory CD8 T cell development. J. Immunol.177, 4247–4251 (2006). CASPubMed Google Scholar
Hand, T.W., Morre, M. & Kaech, S.M. Expression of IL-7 receptor α is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc. Natl. Acad. Sci. USA104, 11730–11735 (2007). CASPubMedPubMed Central Google Scholar
Haring, J.S. et al. Constitutive expression of IL-7 receptor α does not support increased expansion or prevent contraction of antigen-specific CD4 or CD8 T cells following Listeria monocytogenes infection. J. Immunol.180, 2855–2862 (2008). CASPubMed Google Scholar
Sanjabi, S., Mosaheb, M.M. & Flavell, R.A. Opposing effects of TGF-β and IL-15 cytokines control the number of short-lived effector CD8+ T cells. Immunity31, 131–144 (2009). CASPubMed CentralPubMed Google Scholar
Obar, J.J. et al. CD4+ T cell regulation of CD25 expression controls development of short-lived effector CD8+ T cells in primary and secondary responses. Proc. Natl. Acad. Sci. USA107, 193–198 (2010). CASPubMed Google Scholar
Cui, W., Joshi, N.S., Jiang, A. & Kaech, S.M. Effects of Signal 3 during CD8 T cell priming: bystander production of IL-12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine27, 2177–2187 (2009). CASPubMed CentralPubMed Google Scholar
Sheridan, B.S., Cherpes, T.L., Urban, J., Kalinski, P. & Hendricks, R.L. Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes. J. Virol.83, 2237–2245 (2009). CASPubMed Google Scholar
Croom, H.A. et al. Memory precursor phenotype of CD8+ T cells reflects early antigenic experience rather than memory numbers in a model of localized acute influenza infection. Eur. J. Immunol.41, 682–693 (2011). CASPubMed Google Scholar
Tripp, R.A., Hou, S. & Doherty, P.C. Temporal loss of the activated L-selectin-low phenotype for virus-specific CD8+ memory T cells. J. Immunol.154, 5870–5875 (1995). CASPubMed Google Scholar
Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol.4, 225–234 (2003). CASPubMed Google Scholar
Marzo, A.L. et al. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat. Immunol.6, 793–799 (2005). CASPubMed CentralPubMed Google Scholar
Woodland, D.L. & Kohlmeier, J.E. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat. Rev. Immunol.9, 153–161 (2009). CASPubMed Google Scholar
Lefrançois, L. & Puddington, L. Intestinal and pulmonary mucosal T cells: local heroes fight to maintain the status quo. Annu. Rev. Immunol.24, 681–704 (2006). PubMed Google Scholar
Lefrançois, L. Development, trafficking, and function of memory T-cell subsets. Immunol. Rev.211, 93–103 (2006). PubMed Google Scholar
Klonowski, K.D. et al. CD8 T cell recall responses are regulated by the tissue tropism of the memory cell and pathogen. J. Immunol.177, 6738–6746 (2006). CASPubMed Google Scholar
Crowe, S.R. et al. Differential antigen presentation regulates the changing patterns of CD8+ T cell immunodominance in primary and secondary influenza virus infections. J. Exp. Med.198, 399–410 (2003). CASPubMed CentralPubMed Google Scholar
Hufford, M.M., Kim, T.S., Sun, J. & Braciale, T.J. Antiviral CD8+ T cell effector activities in situ are regulated by target cell type. J. Exp. Med.208, 167–180 (2011). CASPubMed CentralPubMed Google Scholar
Wakim, L.M., Waithman, J., van Rooijen, N., Heath, W.R. & Carbone, F.R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science319, 198–202 (2008). CASPubMed Google Scholar
Freeman, M.L., Sheridan, B.S., Bonneau, R.H. & Hendricks, R.L. Psychological stress compromises CD8+ T cell control of latent herpes simplex virus type 1 infections. J. Immunol.179, 322–328 (2007). CASPubMed Google Scholar
Himmelein, S. et al. Circulating herpes simplex type 1 (HSV-1)-specific CD8+ T cells do not access HSV-1 latently infected trigeminal ganglia. Herpesviridae2, 5 (2011). CASPubMed CentralPubMed Google Scholar
Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol.10, 524–530 (2009). CASPubMed Google Scholar
Mora, J.R. et al. Selective imprinting of gut-homing T cells by Peyer′s patch dendritic cells. Nature424, 88–93 (2003). CASPubMed Google Scholar
Agace, W. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol. Lett.128, 21–23 (2010). CASPubMed Google Scholar
Campbell, D.J. & Butcher, E.C. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med.195, 135–141 (2002). CASPubMed CentralPubMed Google Scholar
Mora, J.R. et al. Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J. Exp. Med.201, 303–316 (2005). CASPubMed CentralPubMed Google Scholar
Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity21, 527–538 (2004). CASPubMed Google Scholar
Svensson, M. et al. Retinoic acid receptor signaling levels and antigen dose regulate gut homing receptor expression on CD8+ T cells. Mucosal Immunol.1, 38–48 (2008). CASPubMedPubMed Central Google Scholar
Lefrançois, L. et al. The role of β7 integrins in CD8 T cell trafficking during an antiviral immune response. J. Exp. Med.189, 1631–1638 (1999). PubMed CentralPubMed Google Scholar
Hamann, A., Andrew, D.P., Jablonski-Westrich, D., Holzmann, B. & Butcher, E.C. Role of a4-integrins in lymphocyte homing to mucosal tissues in vivo. J. Immunol.152, 3282–3293 (1994). CASPubMed Google Scholar
Svensson, M. et al. CCL25 mediates the localization of recently activated CD8αβ+ lymphocytes to the small-intestinal mucosa. J. Clin. Invest.110, 1113–1121 (2002). CASPubMed CentralPubMed Google Scholar
Sandborn, W.J. et al. Natalizumab induction and maintenance therapy for Crohn′s disease. N. Engl. J. Med.353, 1912–1925 (2005). CASPubMed Google Scholar
Feagan, B.G. et al. Treatment of ulcerative colitis with a humanized antibody to the α4β7 integrin. N. Engl. J. Med.352, 2499–2507 (2005). CASPubMed Google Scholar
Wurbel, M.A., Malissen, M., Guy-Grand, D., Malissen, B. & Campbell, J.J. Impaired accumulation of antigen-specific CD8 lymphocytes in chemokine CCL25-deficient intestinal epithelium and lamina propria. J. Immunol.178, 7598–7606 (2007). CASPubMed Google Scholar
Streeter, P.R., Berg, E.L., Rouse, B.T., Bargatze, R.F. & Butcher, E.C. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature331, 41–46 (1988). CASPubMed Google Scholar
Berg, E.L. et al. Homing receptors and vascular addressins: cell adhesion molecules that direct lymphocyte traffic. Immunol. Rev.108, 5–18 (1989). CASPubMed Google Scholar
Briskin, M. et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am. J. Pathol.151, 97–110 (1997). CASPubMed CentralPubMed Google Scholar
Soderberg, K.A., Linehan, M.M., Ruddle, N.H. & Iwasaki, A. MAdCAM-1 expressing sacral lymph node in the lymphotoxin β-deficient mouse provides a site for immune generation following vaginal herpes simplex virus-2 infection. J. Immunol.173, 1908–1913 (2004). CASPubMed Google Scholar
Bedoui, S. et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol.10, 488–495 (2009). CASPubMed Google Scholar
Kim, T.S. & Braciale, T.J. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLoS ONE4, e4204 (2009). PubMed CentralPubMed Google Scholar
Ballesteros-Tato, A., Leon, B., Lund, F.E. & Randall, T.D. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8+ T cell responses to influenza. Nat. Immunol.11, 216–224 (2010). CASPubMed CentralPubMed Google Scholar
del Rio, M.L., Bernhardt, G., Rodriguez-Barbosa, J.I. & Forster, R. Development and functional specialization of CD103+ dendritic cells. Immunol. Rev.234, 268–281 (2010). CASPubMed Google Scholar
Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med.204, 1757–1764 (2007). CASPubMed CentralPubMed Google Scholar
Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med.204, 1775–1785 (2007). CASPubMed CentralPubMed Google Scholar
Siddiqui, K.R., Laffont, S. & Powrie, F. E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity32, 557–567 (2010). CASPubMed CentralPubMed Google Scholar
Kim, S.K. et al. Generation of mucosal cytotoxic T cells against soluble protein by tissue-specific environmental and costimulatory signals. Proc. Natl. Acad. Sci. USA95, 10814–10819 (1998). CASPubMedPubMed Central Google Scholar
Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med.207, 553–564 (2010). CASPubMed CentralPubMed Google Scholar
Kunkel, E.J. et al. Expression of the chemokine receptors CCR4, CCR5, and CXCR3 by human tissue-infiltrating lymphocytes. Am. J. Pathol.160, 347–355 (2002). CASPubMed CentralPubMed Google Scholar
Ely, K.H., Cookenham, T., Roberts, A.D. & Woodland, D.L. Memory T cell populations in the lung airways are maintained by continual recruitment. J. Immunol.176, 537–543 (2006). CASPubMed Google Scholar
Goodarzi, K., Goodarzi, M., Tager, A.M., Luster, A.D. & von Andrian, U.H. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat. Immunol.4, 965–973 (2003). CASPubMed Google Scholar
Tager, A.M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat. Immunol.4, 982–990 (2003). CASPubMed Google Scholar
Richter, M. et al. Collagen distribution and expression of collagen-binding α1β1 (VLA-1) and α2β1 (VLA-2) integrins on CD4 and CD8 T cells during influenza infection. J. Immunol.178, 4506–4516 (2007). CASPubMed Google Scholar
Ray, S.J. et al. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity20, 167–179 (2004). CASPubMed Google Scholar
Kim, S.K., Reed, D.S., Heath, W.R., Carbone, F. & Lefrançois, L. Activation and migration of CD8 T cells in the intestinal mucosa. J. Immunol.159, 4295–4306 (1997). CASPubMed Google Scholar
El-Asady, R. et al. TGFβ-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med.201, 1647–1657 (2005). CASPubMed CentralPubMed Google Scholar
Kim, S.K., Schluns, K.S. & Lefrançois, L. Induction and visualization of mucosal memory CD8 T cells following systemic virus infection. J. Immunol.163, 4125–4132 (1999). CASPubMed Google Scholar
Schön, M.P. et al. Mucosal T lymphocyte numbers are selectively reduced in integrin α E (CD103)-deficient mice. J. Immunol.162, 6641–6649 (1999). PubMed Google Scholar
Poussier, P., Edouard, P., Lee, C., Binnie, M. & Julius, M. Thymus-independent development and negative selection of T cells expressing T cell receptor α/β in the intestinal epithelium: evidence for distinct circulation patterns of gut- and thymus-derived T lymphocytes. J. Exp. Med.176, 187–199 (1992). CASPubMed Google Scholar
Wakim, L.M., Woodward-Davis, A. & Bevan, M.J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl. Acad. Sci. USA107, 17872–17879 (2010). CASPubMedPubMed Central Google Scholar
Khanna, K.M., Bonneau, R.H., Kinchington, P.R. & Hendricks, R.L. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity18, 593–603 (2003). CASPubMed CentralPubMed Google Scholar
Sheridan, B.S., Khanna, K.M., Frank, G.M. & Hendricks, R.L. Latent virus influences the generation and maintenance of CD8+ T cell memory. J. Immunol.177, 8356–8364 (2006). CASPubMed Google Scholar
Van Assche, G. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn′s disease. N. Engl. J. Med.353, 362–368 (2005). CASPubMed Google Scholar
Langer-Gould, A., Atlas, S.W., Green, A.J., Bollen, A.W. & Pelletier, D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med.353, 375–381 (2005). CASPubMed Google Scholar
Kleinschmidt-DeMasters, B.K. & Tyler, K.L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon β-1a for multiple sclerosis. N. Engl. J. Med.353, 369–374 (2005). CASPubMed Google Scholar
Khanna, K.M. et al. In situ imaging reveals different responses by naive and memory CD8 T cells to late antigen presentation by lymph node DC after influenza virus infection. Eur. J. Immunol.38, 3304–3315 (2008). CASPubMed CentralPubMed Google Scholar
Shapiro, L. & Weis, W.I. Structure and biochemistry of cadherins and catenins. Cold Spring Harb. Perspect. Biol.1, a003053 (2009). PubMed CentralPubMed Google Scholar
Li, Y. et al. Structure of natural killer cell receptor KLRG1 bound to E-cadherin reveals basis for MHC-independent missing self recognition. Immunity31, 35–46 (2009). PubMed CentralPubMed Google Scholar
Lefrançois, L., Barrett, T.A., Havran, W.L. & Puddington, L. Developmental expression of the αIELβ7 integrin on T cell receptor γδ and T cell receptor αβ T cells. Eur. J. Immunol.24, 635–640 (1994). PubMed Google Scholar
Schlickum, S. et al. Integrin α E(CD103)β 7 influences cellular shape and motility in a ligand-dependent fashion. Blood112, 619–625 (2008). CASPubMed Google Scholar
Le Floc'h, A. αEβ7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J. Exp. Med.204, 559–570 (2007). CASPubMed Google Scholar
Feng, C. et al. A potential role for CD69 in thymocyte emigration. Int. Immunol.14, 535–544 (2002). CASPubMed Google Scholar
Shiow, L.R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature440, 540–544 (2006). CASPubMed Google Scholar
Bankovich, A.J., Shiow, L.R. & Cyster, J.G. CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J. Biol. Chem.285, 22328–22337 (2010). CASPubMed CentralPubMed Google Scholar
Debes, G.F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol.6, 889–894 (2005). CASPubMed CentralPubMed Google Scholar
Bromley, S.K., Thomas, S.Y. & Luster, A.D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol.6, 895–901 (2005). CASPubMed Google Scholar
Amanna, I.J. & Slifka, M.K. Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology411, 206–215 (2011). CASPubMed Google Scholar
Streeck, H. & Nixon, D.F. T cell immunity in acute HIV-1 infection. J. Infect. Dis.202 Suppl 2, S302–S308 (2010). CASPubMed Google Scholar
Fontoura, P. Monoclonal antibody therapy in multiple sclerosis: Paradigm shifts and emerging challenges. MAbs2, 670–681 (2010). PubMed CentralPubMed Google Scholar
Reenaers, C., Louis, E. & Belaiche, J. Current directions of biologic therapies in inflammatory bowel disease. Therap. Adv. Gastroenterol.3, 99–106 (2010). CASPubMed CentralPubMed Google Scholar
Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature462, 510–513 (2009). CASPubMed CentralPubMed Google Scholar
Kelsall, B.L. & Leon, F. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol. Rev.206, 132–148 (2005). CASPubMed Google Scholar
Taylor, B.C. et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med.206, 655–667 (2009). CASPubMed CentralPubMed Google Scholar
Rubinstein, M.P. et al. IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood112, 3704–3712 (2008). CASPubMed CentralPubMed Google Scholar
DePaolo, R.W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature471, 220–224 (2011). CASPubMed CentralPubMed Google Scholar