Intrinsic immunity: a front-line defense against viral attack (original) (raw)
Sommerfelt, M.A. & Weiss, R.A. Receptor interference groups of 20 retroviruses plating on human cells. Virology176, 58–69 (1990). ArticleCASPubMed Google Scholar
Miller, A.D. & Wolgamot, G. Murine retroviruses use at least six different receptors for entry into Mus dunni cells. J. Virol.71, 4531–4535 (1997). CASPubMedPubMed Central Google Scholar
Ikeda, H. & Sugimura, H. Fv-4 resistance gene: a truncated endogenous murine leukemia virus with ecotropic interference properties. J. Virol.63, 5405–5412 (1989). CASPubMedPubMed Central Google Scholar
Mura, M. et al. Late viral interference induced by transdominant Gag of an endogenous retrovirus. Proc. Natl. Acad. Sci. USA101, 11117–11122 (2004). ArticleCASPubMedPubMed Central Google Scholar
Odaka, T. & Yamamoto, T. Inheritance of susceptibility to Friend mouse leukemia virus. 11. Spleen foci method applied to test the susceptibility of crossbred progeny between a sensitive and a resistant strain. Jpn. J. Exp. Med.35, 311–314 (1965). CASPubMed Google Scholar
Lilly, F. Susceptibility to two strains of Friend leukemia virus in mice. Science155, 461–462 (1967). ArticleCASPubMed Google Scholar
Suzuki, S. FV-4: a new gene affecting the splenomegaly induction by Friend leukemia virus. Jpn. J. Exp. Med.45, 473–478 (1975). CASPubMed Google Scholar
Gardner, M.B., Rasheed, S., Pal, B.K., Estes, J.D. & O'Brien, S.J. Akvr-1, a dominant murine leukemia virus restriction gene, is polymorphic in leukemia-prone wild mice. Proc. Natl. Acad. Sci. USA77, 531–535 (1980). ArticleCASPubMedPubMed Central Google Scholar
Rasheed, S. & Gardner, M.B. Resistance to fibroblasts and hematopoietic cells to ecotropic murine leukemia virus infection; an Akvr-1R gene effect. Int. J. Cancer31, 491–496 (1983). ArticleCASPubMed Google Scholar
Hartley, J.W., Rowe, W.P. & Huebner, R.J. Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures. J. Virol.5, 221–225 (1970). CASPubMedPubMed Central Google Scholar
Pincus, T., Hartley, J.W. & Rowe, W.P. A major genetic locus affecting resistance to infection with murine leukemia viruses. I. Tissue culture studies of naturally occurring viruses. J. Exp. Med.133, 1219–1233 (1971). ArticleCASPubMedPubMed Central Google Scholar
Rowe, W.P. Studies of genetic transmission of murine leukemia virus by AKR mice. I. Crosses with Fv-1 n strains of mice. J. Exp. Med.136, 1272–1285 (1972). ArticleCASPubMedPubMed Central Google Scholar
Rowe, W.P. & Hartley, J.W. Studies of genetic transmission of murine leukemia virus by AKR mice. II. Crosses with Fv-1 b strains of mice. J. Exp. Med.136, 1286–1301 (1972). ArticleCASPubMedPubMed Central Google Scholar
Kozak, C.A. Analysis of wild-derived mice for Fv-1 and Fv-2 murine leukemia virus restriction loci: a novel wild mouse Fv-1 allele responsible for lack of host range restriction. J. Virol.55, 281–285 (1985). CASPubMedPubMed Central Google Scholar
DesGroseillers, L. & Jolicoeur, P. Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses. J. Virol.48, 685–696 (1983). CASPubMedPubMed Central Google Scholar
Kozak, C.A. & Chakraborti, A. Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology225, 300–305 (1996). ArticleCASPubMed Google Scholar
Decleve, A., Niwa, O., Gelmann, E. & Kaplan, H.S. Replication kinetics of N- and B-tropic murine leukemia viruses on permissive and nonpermissive cells in vitro. Virology65, 320–332 (1975). ArticleCASPubMed Google Scholar
Duran-Troise, G., Bassin, R.H., Rein, A. & Gerwin, B.I. Loss of Fv-1 restriction in Balb/3T3 cells following infection with a single N tropic murine leukemia virus particle. Cell10, 479–488 (1977). ArticleCASPubMed Google Scholar
Pincus, T., Hartley, J.W. & Rowe, W.P. A major genetic locus affecting resistance to infection with murine leukemia viruses. IV. Dose-response relationships in Fv-1-sensitive and resistant cell cultures. Virology65, 333–342 (1975). ArticleCASPubMed Google Scholar
Tennant, R.W., Otten, J.A., Brown, A., Yang, W.K. & Kennel, S.J. Characterization of Fv-1 host range strains of murine retroviruses by titration and p30 protein characteristics. Virology99, 349–357 (1979). ArticleCASPubMed Google Scholar
Boone, L.R., Innes, C.L. & Heitman, C.K. Abrogation of Fv-1 restriction by genome-deficient virions produced by a retrovirus packaging cell line. J. Virol.64, 3376–3381 (1990). CASPubMedPubMed Central Google Scholar
Bassin, R.H., Duran-Troise, G., Gerwin, B.I. & Rein, A. Abrogation of Fv-1b restriction with murine leukemia viruses inactivated by heat or by gamma irradiation. J. Virol.26, 306–315 (1978). CASPubMedPubMed Central Google Scholar
Best, S., Le Tissier, P., Towers, G. & Stoye, J.P. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature382, 826–829 (1996). ArticleCASPubMed Google Scholar
Taylor, W.R. & Stoye, J.P. Consensus structural models for the amino terminal domain of the retrovirus restriction gene Fv1 and the murine leukaemia virus capsid proteins. BMC Struct. Biol.4, 1 (2004). ArticlePubMedPubMed Central Google Scholar
Ganser, B.K., Cheng, A., Sundquist, W.I. & Yeager, M. Three-dimensional structure of the M-MuLV CA protein on a lipid monolayer: a general model for retroviral capsid assembly. EMBO J.22, 2886–2892 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bock, M., Bishop, K.N., Towers, G. & Stoye, J.P. Use of a transient assay for studying the genetic determinants of Fv1 restriction. J. Virol.74, 7422–7430 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bishop, K.N., Bock, M., Towers, G. & Stoye, J.P. Identification of the regions of Fv1 necessary for murine leukemia virus restriction. J. Virol.75, 5182–5188 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cowan, S. et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc. Natl. Acad. Sci. USA99, 11914–11919 (2002). ArticleCASPubMedPubMed Central Google Scholar
Munk, C., Brandt, S.M., Lucero, G. & Landau, N.R. A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc. Natl. Acad. Sci. USA99, 13843–13848 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hofmann, W. et al. Species-specific, postentry barriers to primate immunodeficiency virus infection. J. Virol.73, 10020–10028 (1999). CASPubMedPubMed Central Google Scholar
Owens, C.M., Yang, P.C., Gottlinger, H. & Sodroski, J. Human and simian immunodeficiency virus capsid proteins are major viral determinants of early, postentry replication blocks in simian cells. J. Virol.77, 726–731 (2003). ArticleCASPubMedPubMed Central Google Scholar
Dorfman, T. & Gottlinger, H.G. The human immunodeficiency virus type 1 capsid p2 domain confers sensitivity to the cyclophilin-binding drug SDZ NIM 811. J. Virol.70, 5751–5757 (1996). CASPubMedPubMed Central Google Scholar
Hatziioannou, T., Cowan, S., Goff, S.P., Bieniasz, P.D. & Towers, G. Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J.22, 385–94 (2003). ArticleCASPubMedPubMed Central Google Scholar
Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature427, 848–853 (2004). ArticleCASPubMed Google Scholar
Hatziioannou, T., Perez-Caballero, D., Yang, A., Cowan, S. & Bieniasz, P.D. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5α. Proc. Natl. Acad. Sci. USA101, 10774–10779 (2004). ArticleCASPubMedPubMed Central Google Scholar
Keckesova, Z., Ylinen, L.M. & Towers, G.J. The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc. Natl. Acad. Sci. USA101, 10780–10785 (2004). ArticleCASPubMedPubMed Central Google Scholar
Perron, M.J. et al. TRIM5α mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc. Natl. Acad. Sci. USA101, 11827–11832 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sayah, D.M., Sokolskaja, E., Berthoux, L. & Luban, J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature430, 569–573 (2004). ArticleCASPubMed Google Scholar
Towers, G.J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat. Med.9, 1138–1143 (2003). ArticleCASPubMed Google Scholar
von Schwedler, U.K. et al. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J.17, 1555–1568 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ganser, B.K., Li, S., Klishko, V.Y., Finch, J.T. & Sundquist, W.I. Assembly and analysis of conical models for the HIV-1 core. Science283, 80–83 (1999). ArticleCASPubMed Google Scholar
Luban, J., Bossolt, K.L., Franke, E.K., Kalpana, G.V. & Goff, S.P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell73, 1067–1078 (1993). ArticleCASPubMed Google Scholar
Xu, L. et al. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. Exp. Cell Res.288, 84–93 (2003). ArticleCASPubMed Google Scholar
Schwartz, O., Marechal, V., Friguet, B., Arenzana-Seisdedos, F. & Heard, J.M. Antiviral activity of the proteasome on incoming human immunodeficiency virus type 1. J. Virol.72, 3845–3850 (1998). CASPubMedPubMed Central Google Scholar
Butler, S.L., Johnson, E.P. & Bushman, F.D. Human immunodeficiency virus cDNA metabolism: notable stability of two-long terminal repeat circles. J. Virol.76, 3739–3747 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pryciak, P.M. & Varmus, H.E. Fv-1 restriction and its effects on murine leukemia virus integration in vivo and in vitro. J. Virol.66, 5959–5966 (1992). CASPubMedPubMed Central Google Scholar
Gabuzda, D.H. et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol.66, 6489–6495 (1992). CASPubMedPubMed Central Google Scholar
Madani, N. & Kabat, D. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J. Virol.72, 10251–10255 (1998). CASPubMedPubMed Central Google Scholar
Simon, J.H., Gaddis, N.C., Fouchier, R.A. & Malim, M.H. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat. Med.4, 1397–1400 (1998). ArticleCASPubMed Google Scholar
Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature418, 646–650 (2002). ArticleCASPubMed Google Scholar
Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature424, 99–103 (2003). ArticleCASPubMed Google Scholar
Harris, R.S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell113, 803–809 (2003). ArticleCASPubMed Google Scholar
Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A.J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science300, 1112 (2003). ArticleCASPubMed Google Scholar
Yu, Q. et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat. Struct. Mol. Biol.11, 435–442 (2004). ArticleCASPubMed Google Scholar
Sleigh, R., Sharkey, M., Newman, M.A., Hahn, B. & Stevenson, M. Differential association of uracil DNA glycosylase with SIVSM Vpr and Vpx proteins. Virology245, 338–343 (1998). ArticleCASPubMed Google Scholar
Bouhamdan, M. et al. Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme. J. Virol.70, 697–704 (1996). CASPubMedPubMed Central Google Scholar
Selig, L. et al. Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest. J. Virol.71, 4842–4846 (1997). CASPubMedPubMed Central Google Scholar
Willetts, K.E. et al. DNA repair enzyme uracil DNA glycosylase is specifically incorporated into human immunodeficiency virus type 1 viral particles through a Vpr-independent mechanism. J. Virol.73, 1682–1688 (1999). CASPubMedPubMed Central Google Scholar
Mansky, L.M., Preveral, S., Selig, L., Benarous, R. & Benichou, S. The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. J. Virol.74, 7039–7047 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics79, 285–296 (2002). ArticleCASPubMed Google Scholar
Wiegand, H.L., Doehle, B.P., Bogerd, H.P. & Cullen, B.R. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J.23, 2451–2458 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zheng, Y.H. et al. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J. Virol.78, 6073–6076 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bishop, K.N. et al. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr. Biol.14, 1392–1396 (2004). ArticleCASPubMed Google Scholar
Liddament, M.T., Brown, W.L., Schumacher, A.J. & Harris, R.S. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol14, 1385–1391 (2004). ArticleCASPubMed Google Scholar
Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science302, 1056–1060 (2003). ArticleCASPubMed Google Scholar
Sheehy, A.M., Gaddis, N.C. & Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med.9, 1404–1407 (2003). ArticleCASPubMed Google Scholar
Marin, M., Rose, K.M., Kozak, S.L. & Kabat, D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat. Med.9, 1398–1403 (2003). ArticleCASPubMed Google Scholar
Mehle, A. et al. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J. Biol. Chem.279, 7792–7798 (2003). ArticlePubMedCAS Google Scholar
Conticello, S.G., Harris, R.S. & Neuberger, M.S. The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr. Biol.13, 2009–2013 (2003). ArticleCASPubMed Google Scholar
Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W.C. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol. Cell12, 591–601 (2003). ArticleCASPubMed Google Scholar
Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell114, 21–31 (2003). ArticleCASPubMed Google Scholar
Turelli, P., Mangeat, B., Jost, S., Vianin, S. & Trono, D. Inhibition of hepatitis B virus replication by APOBEC3G. Science303, 1829 (2004). ArticlePubMed Google Scholar
Ngui, S.L., Hallet, R. & Teo, C.G. Natural and iatrogenic variation in hepatitis B virus. Rev. Med. Virol.9, 183–209 (1999). ArticleCASPubMed Google Scholar
Machida, K. et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl. Acad. Sci. USA101, 4262–4267 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bishop, K.N., Holmes, R.K., Sheehy, A.M. & Malim, M.H. APOBEC-mediated editing of viral RNA. Science305, 645 (2004). ArticleCASPubMed Google Scholar
Gao, G., Guo, X. & Goff, S.P. Inhibition of retroviral RNA production by ZAP a CCCH-type zinc finger protein. Science297, 1703–1706 (2002). ArticleCASPubMed Google Scholar
Varthakavi, V., Smith, R.M., Bour, S.P., Strebel, K. & Spearman, P. Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proc. Natl. Acad. Sci. USA100, 15154–15159 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gottlinger, H.G., Dorfman, T., Cohen, E.A. & Haseltine, W.A. Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc. Natl. Acad. Sci. USA90, 7381–7385 (1993). ArticleCASPubMedPubMed Central Google Scholar
Geraghty, R.J., Talbot, K.J., Callahan, M., Harper, W. & Panganiban, A.T. Cell type-dependence for Vpu function. J. Med. Primatol.23, 146–150 (1994). ArticleCASPubMed Google Scholar
Sakai, H., Tokunaga, K., Kawamura, M. & Adachi, A. Function of human immunodeficiency virus type 1 Vpu protein in various cell types. J. Gen. Virol.76, 2717–2722 (1995). ArticleCASPubMed Google Scholar
Turelli, P. et al. Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol. Cell7, 1245–1254 (2001). ArticleCASPubMed Google Scholar
Yap, M.W., Nisole, S., Lynch, C. & Stoye, J.P. Trim5α protein restricts both HIV-1 and murine leukemia virus. Proc. Natl. Acad. Sci. USA101, 10786–10791 (2004). ArticleCASPubMedPubMed Central Google Scholar
Berthoux, L. et al. As2O3 enhances retroviral reverse transcription and counteracts Ref1 antiviral activity. J. Virol.77, 3167–3180 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bogerd, H.P., Doehle, B.P., Wiegand, H.L. & Cullen, B.R. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc. Natl. Acad. Sci. USA101, 3770–3774 (2004). ArticleCASPubMedPubMed Central Google Scholar
Schrofelbauer, B., Chen, D. & Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl. Acad. Sci. USA101, 3927–3932 (2004). ArticlePubMedCASPubMed Central Google Scholar
Mangeat, B., Turelli, P., Liao, S. & Trono, D. A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J. Biol. Chem.279, 14481–14483 (2004). ArticleCASPubMed Google Scholar
Xu, H. et al. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc. Natl. Acad. Sci. USA101, 5652–5657 (2004). ArticleCASPubMedPubMed Central Google Scholar
Svarovskaia, E.S. et al. Human APOBEC3G is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J. Biol. Chem.279, 35822–35828 (2004). ArticleCASPubMed Google Scholar
Cen, S. et al. The interaction between HIV-1 Gag and APOBEC3G. J. Biol. Chem.279, 33177–33184 (2004). ArticleCASPubMed Google Scholar
Alce, T.M. & Popik, W. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. 279, 34083–34086 J. Biol. Chem. (2004). ArticleCASPubMed Google Scholar
Zennou, V., Perez-Caballero, D. & Bieniasz, P.D. APOBEC3G incorporation into HIV-1 particles J. Virology (in the press).
Schafer, A., Bogerd, H.P. & Cullen, B.R. Specific packaging of APOBEC3G into HIV-1 Virions is mediated by the nucleocapsid domain of the Gag polyprotein precursor. Virology (in the press).