Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology (original) (raw)
Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255, 1707–1710 (1992). ArticleCAS Google Scholar
Reynolds, B.A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci.12, 4565–4574 (1992). ArticleCAS Google Scholar
Reynolds, B.A. & Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol.175, 1–13 (1996). ArticleCAS Google Scholar
Craig, C.G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci.16, 2649–2658 (1996). ArticleCAS Google Scholar
Represa, A., Shimazaki, T., Simmonds, M. & Weiss, S. EGF-responsive neural stem cells are a transient population in the developing mouse spinal cord. Eur. J. Neurosci.14, 452–462 (2001). ArticleCAS Google Scholar
Chojnacki, A. & Weiss, S. Isolation of a novel platelet-derived growth factor-responsive precursor from the embryonic ventral forebrain. J. Neurosci.24, 10888–10899 (2004). ArticleCAS Google Scholar
Tropepe, V. et al. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol.208, 166–188 (1999). ArticleCAS Google Scholar
Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science287, 2032–2036 (2000). ArticleCAS Google Scholar
Seaberg, R.M. & van der Kooy, D. Adult neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J. Neurosci.22, 1784–1793 (2002). ArticleCAS Google Scholar
Ramirez-Castillejo, C. et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci.9, 331–339 (2006). ArticleCAS Google Scholar
Hitoshi, S. et al. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signalling. Genes Dev.18, 1806–1811 (2004). ArticleCAS Google Scholar
Kippin, T.E., Martens, D.J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev.19, 756–767 (2005). ArticleCAS Google Scholar
Kippin, T.E., Kapur, S. & van der Kooy, D. Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J. Neurosci.25, 5815–5823 (2005). ArticleCAS Google Scholar
Kukekov, V.G., Laywell, E.D., Thomas, L.B. & Steindler, D.A. A nestin-negativ precursor cell from the adult mouse brain gives rise to neurons and glia. Glia21, 399–407 (1997). ArticleCAS Google Scholar
Suslov, O.N., Kukekov, V.G., Ignatova, T.N. & Steindler, D.A. Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc. Natl. Acad. Sci. USA99, 14506–14511 (2002). ArticleCAS Google Scholar
Imura, T., Kornblum, H.I. & Sofroniew, M.V. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J. Neurosci.23, 2824–2832 (2003). ArticleCAS Google Scholar
Kim, M. & Morshead, C.M. Distinct populations of forebrain neural stem and progenitor cells can be isolated using side-population analysis. J. Neurosci.23, 10703–10709 (2003). ArticleCAS Google Scholar
Morshead, C.M., Garcia, A.D., Sofroniew, M.V. & van der Kooy, D. The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur. J. Neurosci.18, 76–84 (2003). Article Google Scholar
Molofsky, A.V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425, 962–967 (2003). ArticleCAS Google Scholar
Nunes, M.C. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med.9, 439–447 (2003). ArticleCAS Google Scholar
Zhang, S.C., Lipsitz, D. & Duncan, I.D. Self-renewing canine oligodendroglial progenitor expanded as oligospheres. J. Neurosci. Res.54, 181–190 (1998). ArticleCAS Google Scholar
Seaberg, R.M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol.22, 1115–1124 (2004). ArticleCAS Google Scholar
Toma, J.G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol.3, 778–784 (2001). ArticleCAS Google Scholar
Matsuda, M. et al. Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev. Cell6, 193–203 (2004). ArticleCAS Google Scholar
Hemmati, H.D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA100, 15178–15183 (2003). ArticleCAS Google Scholar
Snyder, E.Y. et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell68, 33–51 (1992). ArticleCAS Google Scholar
Parker, M.A. et al. Expression profile of an operationally-defined neural stem cell clone. Exp. Neurol.194, 320–332 (2005). ArticleCAS Google Scholar
Gritti, A. et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J. Neurosci.22, 437–445 (2002). ArticleCAS Google Scholar
Lobo, M.V. et al. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres. J. Histochem. Cytochem.51, 89–103 (2003). Article Google Scholar
Morshead, C.M., Benveniste, P., Iscove, N.N. & van der Kooy, D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat. Med.8, 268–273 (2002). ArticleCAS Google Scholar
Wilson, H.V. On some phenomena of coalescence and regeneration in sponges. J. Exp. Zool.5, 245–258 (1907). Article Google Scholar
Studer, L., Tabar, V. & McKay, R.D.G. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci.1, 290–295 (1998). ArticleCAS Google Scholar
Garcia, A.D., Doan, N.B., Imura, T., Bush, T.G. & Sofroniew, M.V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci.7, 1233–1241 (2004). ArticleCAS Google Scholar
Reynolds, B.A. & Rietze, R.L. Neural stem cells and neurospheres – re-evaluating the relationship. Nat. Methods2, 333–336 (2005). ArticleCAS Google Scholar
Gritti, A. et al. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J. Neurosci.19, 3287–3297 (1999). ArticleCAS Google Scholar