Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content (original) (raw)

References

  1. Ramón y Cajal, S. Structure and connections of neurons. Bull. Los Angel. Neuro. Soc. 17, 5–46 (1952).
    PubMed Google Scholar
  2. Marder, E. & Goaillard, J.M. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574 (2006).
    Article CAS PubMed Google Scholar
  3. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).
    Article CAS PubMed Google Scholar
  4. Mainen, Z.F. & Sejnowski, T.J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).
    Article CAS PubMed Google Scholar
  5. Schaefer, A.T., Larkum, M.E., Sakmann, B. & Roth, A. Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J. Neurophysiol. 89, 3143–3154 (2003).
    Article PubMed Google Scholar
  6. Schulz, D.J., Goaillard, J.M. & Marder, E. Variable channel expression in identified single and electrically coupled neurons in different animals. Nat. Neurosci. 9, 356–362 (2006).
    Article CAS PubMed Google Scholar
  7. Ecker, A.S. et al. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010).
    Article CAS PubMed Google Scholar
  8. Friedrich, R.W. & Laurent, G. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291, 889–894 (2001).
    Article CAS PubMed Google Scholar
  9. Stocks, N.G. Suprathreshold stochastic resonance in multilevel threshold systems. Phys. Rev. Lett. 84, 2310–2313 (2000).
    Article CAS PubMed Google Scholar
  10. Brody, C.D. & Hopfield, J.J. Simple networks for spike timing–based computation, with application to olfactory processing. Neuron 37, 843–852 (2003).
    Article CAS PubMed Google Scholar
  11. Ermentrout, G.B., Galan, R.F. & Urban, N.N. Reliability, synchrony and noise. Trends Neurosci. 31, 428–434 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  12. Chen, T.W., Lin, B.J. & Schild, D. Odor coding by modules of coherent mitral/tufted cells in the vertebrate olfactory bulb. Proc. Natl. Acad. Sci. USA 106, 2401–2406 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  13. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).
    Article CAS PubMed Google Scholar
  14. Wachowiak, M., Denk, W. & Friedrich, R.W. Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging. Proc. Natl. Acad. Sci. USA 101, 9097–9102 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  15. Wellis, D.P., Scott, J.W. & Harrison, T.A. Discrimination among odorants by single neurons of the rat olfactory bulb. J. Neurophysiol. 61, 1161–1177 (1989).
    Article CAS PubMed Google Scholar
  16. Margrie, T.W., Sakmann, B. & Urban, N.N. Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proc. Natl. Acad. Sci. USA 98, 319–324 (2001).
    Article CAS PubMed Google Scholar
  17. Kazama, H. & Wilson, R.I. Origins of correlated activity in an olfactory circuit. Nat. Neurosci. 12, 1136–1144 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  18. Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  19. Schoppa, N.E. & Westbrook, G.L. Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nat. Neurosci. 2, 1106–1113 (1999).
    Article CAS PubMed Google Scholar
  20. Chen, W.R. & Shepherd, G.M. Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb. Brain Res. 745, 189–196 (1997).
    Article CAS PubMed Google Scholar
  21. de Ruyter van Steveninck, R.R., Lewen, G.D., Strong, S.P., Koberle, R. & Bialek, W. Reproducibility and variability in neural spike trains. Science 275, 1805–1808 (1997).
    Article CAS PubMed Google Scholar
  22. Mainen, Z.F. & Sejnowski, T.J. Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995).
    Article CAS PubMed Google Scholar
  23. Galán, R.F., Ermentrout, G.B. & Urban, N.N. Optimal time scale for spike-time reliability: theory, simulations and experiments. J. Neurophysiol. 99, 277–283 (2008).
    Article PubMed Google Scholar
  24. Ermentrout, G.B., Galan, R.F. & Urban, N.N. Relating neural dynamics to neural coding. Phys. Rev. Lett. 99, 248103 (2007).
    Article PubMed PubMed Central Google Scholar
  25. Bryant, H.L. & Segundo, J.P. Spike initiation by transmembrane current: a white-noise analysis. J. Physiol. (Lond.) 260, 279–314 (1976).
    Article CAS Google Scholar
  26. Schwartz, O., Pillow, J.W., Rust, N.C. & Simoncelli, E.P. Spike-triggered neural characterization. J. Vis. 6, 484–507 (2006).
    Article PubMed Google Scholar
  27. Meister, M., Pine, J. & Baylor, D.A. Multi-neuronal signals from the retina: acquisition and analysis. J. Neurosci. Methods 51, 95–106 (1994).
    Article CAS PubMed Google Scholar
  28. Geffen, M.N., Broome, B.M., Laurent, G. & Meister, M. Neural encoding of rapidly fluctuating odors. Neuron 61, 570–586 (2009).
    Article CAS PubMed Google Scholar
  29. Osborne, L.C., Palmer, S.E., Lisberger, S.G. & Bialek, W. The neural basis for combinatorial coding in a cortical population response. J. Neurosci. 28, 13522–13531 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  30. Wesson, D.W., Verhagen, J.V. & Wachowiak, M. Why sniff fast? The relationship between sniff frequency, odor discrimination and receptor neuron activation in the rat. J. Neurophysiol. 101, 1089–1102 (2009).
    Article PubMed Google Scholar
  31. Verhagen, J.V., Wesson, D.W., Netoff, T.I., White, J.A. & Wachowiak, M. Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nat. Neurosci. 10, 631–639 (2007).
    Article CAS PubMed Google Scholar
  32. Schaefer, A.T., Angelo, K., Spors, H. & Margrie, T.W. Neuronal oscillations enhance stimulus discrimination by ensuring action potential precision. PLoS Biol. 4, e163 (2006).
    Article PubMed PubMed Central Google Scholar
  33. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat. Neurosci. 9, 534–542 (2006).
    Article CAS PubMed Google Scholar
  34. Day, M. et al. Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2 and Kleak channels. J. Neurosci. 25, 8776–8787 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  35. Taylor, A.L., Goaillard, J.M. & Marder, E. How multiple conductances determine electrophysiological properties in a multicompartment model. J. Neurosci. 29, 5573–5586 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  36. Goaillard, J.M., Taylor, A.L., Schulz, D.J. & Marder, E. Functional consequences of animal-to-animal variation in circuit parameters. Nat. Neurosci. 12, 1424–1430 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  37. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99–107 (2006).
    Article CAS PubMed Google Scholar
  38. Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C.Z. & Markram, H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb. Cortex 12, 395–410 (2002).
    Article PubMed Google Scholar
  39. Chou, Y.H. et al. Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat. Neurosci. 13, 439–449 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  40. Desai, N.S., Rutherford, L.C. & Turrigiano, G.G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520 (1999).
    Article CAS PubMed Google Scholar
  41. Salinas, E. & Sejnowski, T.J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  42. Arevian, A.C., Kapoor, V. & Urban, N.N. Activity-dependent gating of lateral inhibition in the mouse olfactory bulb. Nat. Neurosci. 11, 80–87 (2008).
    Article CAS PubMed Google Scholar
  43. Laurent, G. et al. Odor encoding as an active, dynamical process: experiments, computation and theory. Annu. Rev. Neurosci. 24, 263–297 (2001).
    Article CAS PubMed Google Scholar
  44. Bazhenov, M. et al. Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30, 553–567 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  45. Stopfer, M., Bhagavan, S., Smith, B.H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70–74 (1997).
    Article CAS PubMed Google Scholar
  46. Galán, R.F., Fourcaud-Trocmé, N., Ermentrout, G.B. & Urban, N.N. Correlation-induced synchronization of oscillations in olfactory bulb neurons. J. Neurosci. 26, 3646–3655 (2006).
    Article PubMed PubMed Central Google Scholar
  47. Kashiwadani, H., Sasaki, Y.F., Uchida, N. & Mori, K. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J. Neurophysiol. 82, 1786–1792 (1999).
    Article CAS PubMed Google Scholar
  48. Kapoor, V. & Urban, N.N. Glomerulus-specific, long-latency activity in the olfactory bulb granule cell network. J. Neurosci. 26, 11709–11719 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  49. Urban, N.N. & Sakmann, B. Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. J. Physiol. (Lond.) 542, 355–367 (2002).
    Article CAS Google Scholar

Download references