Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content (original) (raw)
References
Ramón y Cajal, S. Structure and connections of neurons. Bull. Los Angel. Neuro. Soc.17, 5–46 (1952). PubMed Google Scholar
Marder, E. & Goaillard, J.M. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci.7, 563–574 (2006). ArticleCASPubMed Google Scholar
Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science287, 273–278 (2000). ArticleCASPubMed Google Scholar
Mainen, Z.F. & Sejnowski, T.J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature382, 363–366 (1996). ArticleCASPubMed Google Scholar
Schaefer, A.T., Larkum, M.E., Sakmann, B. & Roth, A. Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J. Neurophysiol.89, 3143–3154 (2003). ArticlePubMed Google Scholar
Schulz, D.J., Goaillard, J.M. & Marder, E. Variable channel expression in identified single and electrically coupled neurons in different animals. Nat. Neurosci.9, 356–362 (2006). ArticleCASPubMed Google Scholar
Ecker, A.S. et al. Decorrelated neuronal firing in cortical microcircuits. Science327, 584–587 (2010). ArticleCASPubMed Google Scholar
Friedrich, R.W. & Laurent, G. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science291, 889–894 (2001). ArticleCASPubMed Google Scholar
Stocks, N.G. Suprathreshold stochastic resonance in multilevel threshold systems. Phys. Rev. Lett.84, 2310–2313 (2000). ArticleCASPubMed Google Scholar
Brody, C.D. & Hopfield, J.J. Simple networks for spike timing–based computation, with application to olfactory processing. Neuron37, 843–852 (2003). ArticleCASPubMed Google Scholar
Chen, T.W., Lin, B.J. & Schild, D. Odor coding by modules of coherent mitral/tufted cells in the vertebrate olfactory bulb. Proc. Natl. Acad. Sci. USA106, 2401–2406 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wachowiak, M., Denk, W. & Friedrich, R.W. Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging. Proc. Natl. Acad. Sci. USA101, 9097–9102 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wellis, D.P., Scott, J.W. & Harrison, T.A. Discrimination among odorants by single neurons of the rat olfactory bulb. J. Neurophysiol.61, 1161–1177 (1989). ArticleCASPubMed Google Scholar
Margrie, T.W., Sakmann, B. & Urban, N.N. Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proc. Natl. Acad. Sci. USA98, 319–324 (2001). ArticleCASPubMed Google Scholar
Schoppa, N.E. & Westbrook, G.L. Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nat. Neurosci.2, 1106–1113 (1999). ArticleCASPubMed Google Scholar
Chen, W.R. & Shepherd, G.M. Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb. Brain Res.745, 189–196 (1997). ArticleCASPubMed Google Scholar
de Ruyter van Steveninck, R.R., Lewen, G.D., Strong, S.P., Koberle, R. & Bialek, W. Reproducibility and variability in neural spike trains. Science275, 1805–1808 (1997). ArticleCASPubMed Google Scholar
Mainen, Z.F. & Sejnowski, T.J. Reliability of spike timing in neocortical neurons. Science268, 1503–1506 (1995). ArticleCASPubMed Google Scholar
Galán, R.F., Ermentrout, G.B. & Urban, N.N. Optimal time scale for spike-time reliability: theory, simulations and experiments. J. Neurophysiol.99, 277–283 (2008). ArticlePubMed Google Scholar
Bryant, H.L. & Segundo, J.P. Spike initiation by transmembrane current: a white-noise analysis. J. Physiol. (Lond.)260, 279–314 (1976). ArticleCAS Google Scholar
Schwartz, O., Pillow, J.W., Rust, N.C. & Simoncelli, E.P. Spike-triggered neural characterization. J. Vis.6, 484–507 (2006). ArticlePubMed Google Scholar
Meister, M., Pine, J. & Baylor, D.A. Multi-neuronal signals from the retina: acquisition and analysis. J. Neurosci. Methods51, 95–106 (1994). ArticleCASPubMed Google Scholar
Geffen, M.N., Broome, B.M., Laurent, G. & Meister, M. Neural encoding of rapidly fluctuating odors. Neuron61, 570–586 (2009). ArticleCASPubMed Google Scholar
Osborne, L.C., Palmer, S.E., Lisberger, S.G. & Bialek, W. The neural basis for combinatorial coding in a cortical population response. J. Neurosci.28, 13522–13531 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wesson, D.W., Verhagen, J.V. & Wachowiak, M. Why sniff fast? The relationship between sniff frequency, odor discrimination and receptor neuron activation in the rat. J. Neurophysiol.101, 1089–1102 (2009). ArticlePubMed Google Scholar
Verhagen, J.V., Wesson, D.W., Netoff, T.I., White, J.A. & Wachowiak, M. Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nat. Neurosci.10, 631–639 (2007). ArticleCASPubMed Google Scholar
Schaefer, A.T., Angelo, K., Spors, H. & Margrie, T.W. Neuronal oscillations enhance stimulus discrimination by ensuring action potential precision. PLoS Biol.4, e163 (2006). ArticlePubMedPubMed Central Google Scholar
Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat. Neurosci.9, 534–542 (2006). ArticleCASPubMed Google Scholar
Day, M. et al. Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2 and Kleak channels. J. Neurosci.25, 8776–8787 (2005). ArticleCASPubMedPubMed Central Google Scholar
Taylor, A.L., Goaillard, J.M. & Marder, E. How multiple conductances determine electrophysiological properties in a multicompartment model. J. Neurosci.29, 5573–5586 (2009). ArticleCASPubMedPubMed Central Google Scholar
Goaillard, J.M., Taylor, A.L., Schulz, D.J. & Marder, E. Functional consequences of animal-to-animal variation in circuit parameters. Nat. Neurosci.12, 1424–1430 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci.9, 99–107 (2006). ArticleCASPubMed Google Scholar
Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C.Z. & Markram, H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb. Cortex12, 395–410 (2002). ArticlePubMed Google Scholar
Chou, Y.H. et al. Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat. Neurosci.13, 439–449 (2010). ArticleCASPubMedPubMed Central Google Scholar
Desai, N.S., Rutherford, L.C. & Turrigiano, G.G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci.2, 515–520 (1999). ArticleCASPubMed Google Scholar
Arevian, A.C., Kapoor, V. & Urban, N.N. Activity-dependent gating of lateral inhibition in the mouse olfactory bulb. Nat. Neurosci.11, 80–87 (2008). ArticleCASPubMed Google Scholar
Laurent, G. et al. Odor encoding as an active, dynamical process: experiments, computation and theory. Annu. Rev. Neurosci.24, 263–297 (2001). ArticleCASPubMed Google Scholar
Stopfer, M., Bhagavan, S., Smith, B.H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature390, 70–74 (1997). ArticleCASPubMed Google Scholar
Galán, R.F., Fourcaud-Trocmé, N., Ermentrout, G.B. & Urban, N.N. Correlation-induced synchronization of oscillations in olfactory bulb neurons. J. Neurosci.26, 3646–3655 (2006). ArticlePubMedPubMed Central Google Scholar
Kashiwadani, H., Sasaki, Y.F., Uchida, N. & Mori, K. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J. Neurophysiol.82, 1786–1792 (1999). ArticleCASPubMed Google Scholar
Kapoor, V. & Urban, N.N. Glomerulus-specific, long-latency activity in the olfactory bulb granule cell network. J. Neurosci.26, 11709–11719 (2006). ArticleCASPubMedPubMed Central Google Scholar
Urban, N.N. & Sakmann, B. Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. J. Physiol. (Lond.)542, 355–367 (2002). ArticleCAS Google Scholar