Comparative biology of mouse versus human cells: modelling human cancer in mice (original) (raw)
Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell108, 135–144 (2002). ArticleCASPubMed Google Scholar
Herzig, M. & Christofori, G. Recent advances in cancer research: mouse models of tumorigenesis. Biochim. Biophys. Acta1602, 97–113 (2002). CASPubMed Google Scholar
Jonkers, J. & Berns, A. Conditional mouse models of sporadic cancer. Nature Rev. Cancer2, 251–265 (2002). ArticleCAS Google Scholar
Ames, B. N., Saul, R. L., Schwiers, E., Adelman, R. & Cathcart, R. in Molecular Biology of Ageing (eds Sohal, R. S., Birnbam, L. S. & Cutler, R. G.) 137–144 (Raven Press, New York, 1985). Google Scholar
Holliday, R. Neoplastic transformation: the contrasting stability of human and mouse cells. Cancer Surv.28, 103–115 (1996). CASPubMed Google Scholar
Ames, B. N., Shigenaga, M. K. & Hagen, T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl Acad. Sci. USA90, 7915–7922 (1993). ArticleCASPubMedPubMed Central Google Scholar
Adelman, R., Saul, R. L. & Ames, B. N. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc. Natl Acad. Sci. USA85, 2706–2708 (1988). ArticleCASPubMedPubMed Central Google Scholar
Schwartz, A. G. & Moore, C. J. Inverse correlation between species life span and capacity of cultured fibroblasts to bind 7,12-dimethylbenz(a)anthracene to DNA. Exp. Cell Res.109, 448–450 (1977). ArticleCASPubMed Google Scholar
Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell91, 25–34 (1997). ArticleCASPubMed Google Scholar
Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature392, 569–574 (1998). ArticleCASPubMed Google Scholar
Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature406, 641–645 (2000). ArticleCASPubMed Google Scholar
Atkin, N. B. Lack of reciprocal translocations in carcinomas. Cancer Genet. Cytogenet.21, 275–278 (1986). ArticleCASPubMed Google Scholar
Heyer, J., Yang, K., Lipkin, M., Edelmann, W. & Kucherlapati, R. Mouse models for colorectal cancer. Oncogene18, 5325–5333 (1999). ArticleCASPubMed Google Scholar
Newbold, R. F., Overell, R. W. & Connell, J. R. Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature299, 633–635 (1982). ArticleCASPubMed Google Scholar
Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res.25, 585–621 (1961). ArticleCASPubMed Google Scholar
Shay, J. W., Wright, W. E. & Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochim. Biophys. Acta1072, 1–7 (1991). CASPubMed Google Scholar
Harley, C. B. et al. Telomerase, cell immortality, and cancer. Cold Spring Harb. Symp. Quant. Biol.59, 307–315 (1994). ArticleCASPubMed Google Scholar
Prowse, K. R. & Greider, C. W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl Acad. Sci. USA92, 4818–4822 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science266, 2011–2015 (1994). ArticleCASPubMed Google Scholar
Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol.8, 279–282 (1998). ArticleCASPubMed Google Scholar
Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol.2, 731–737 (2001). ArticleCAS Google Scholar
Parrinello, S. et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nature Cell Biol.5, 741–747 (2003). ArticleCASPubMed Google Scholar
Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock? Cell102, 407–410 (2000). ArticleCASPubMed Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). ArticleCASPubMed Google Scholar
Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev.12, 2424–2433 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell91, 649–659 (1997). ArticleCASPubMed Google Scholar
Harvey, M. et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene8, 2457–2467 (1993). CASPubMed Google Scholar
Pantoja, C. & Serrano, M. Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene18, 4974–4982 (1999). ArticleCASPubMed Google Scholar
Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature413, 86–91 (2001). ArticleCASPubMed Google Scholar
Sage, J. et al. Targeted disruption of the three _Rb_-related genes leads to loss of G(1) control and immortalization. Genes Dev.14, 3037–3050 (2000). ArticleCASPubMedPubMed Central Google Scholar
Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature413, 83–86 (2001). ArticleCASPubMed Google Scholar
Dannenberg, J. H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev.14, 3051–3064 (2000). ArticleCASPubMedPubMed Central Google Scholar
Peeper, D. S., Dannenberg, J. H., Douma, S., te Riele, H. & Bernards, R. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nature Cell Biol.3, 198–203 (2001). ArticleCASPubMed Google Scholar
Wei, W., Hemmer, R. M. & Sedivy, J. M. Role of p14ARF in replicative and induced senescence of human fibroblasts. Mol. Cell Biol.21, 6748–6757 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dickson, M. A. et al. Human keratinocytes that express hTERT and also bypass a p16INK4a-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell Biol.20, 1436–1447 (2000). ArticleCASPubMedPubMed Central Google Scholar
Stampfer, M. R. et al. Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor β growth inhibition in p16INK4A(-) human mammary epithelial cells. Proc. Natl Acad. Sci. USA98, 4498–4503 (2001). ArticleCASPubMedPubMed Central Google Scholar
Huot, T. J. et al. Biallelic mutations in p16INK4a confer resistance to Ras- and Ets-induced senescence in human diploid fibroblasts. Mol Cell Biol22, 8135–43 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rogan, E. M. et al. Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts. Mol. Cell Biol.15, 4745–4753 (1995). ArticleCASPubMedPubMed Central Google Scholar
Brown, J. P., Wei, W. & Sedivy, J. M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science277, 831–834 (1997). ArticleCASPubMed Google Scholar
Rodriguez-Viciana, P. et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell89, 457–467 (1997). ArticleCASPubMed Google Scholar
Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J. & Der, C. J. Increasing complexity of Ras signaling. Oncogene17, 1395–1413 (1998). ArticleCASPubMed Google Scholar
Morales, C. P. et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nature Genet.21, 115–118 (1999). ArticleCASPubMed Google Scholar
Hahn, W. C. et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol. Cell Biol.22, 2111–2123 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature400, 464–468 (1999). ArticleCASPubMed Google Scholar
Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J.353, 417–439 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhao, J. J. et al. Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell3, 483–495 (2003). ArticleCASPubMed Google Scholar
Lazarov, M. et al. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nature Med.8, 1105–1114 (2002). ArticleCASPubMed Google Scholar
Seger, Y. R. et al. Transformation of normal human cells in the absence of telomerase activation. Cancer Cell2, 401–413 (2002). ArticleCASPubMed Google Scholar
Oldham, S. M., Clark, G. J., Gangarosa, L. M., Coffey, R. J. Jr. & Der, C. J. Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells. Proc. Natl Acad. Sci. USA93, 6924–6928 (1996). ArticleCASPubMedPubMed Central Google Scholar
Giovannini, M. et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev.14, 1617–1630 (2000). CASPubMedPubMed Central Google Scholar
Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA92, 9363–9367 (1995). ArticleCASPubMedPubMed Central Google Scholar
Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature400, 468–472 (1999). ArticleCASPubMed Google Scholar
Zhu, Y., Ghosh, P., Charnay, P., Burns, D. K. & Parada, L. F. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science296, 920–922 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth Nature Med.7, 1194–1201 (2001). ArticleCASPubMed Google Scholar
Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev.13, 1382–1397 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rabbany, S. Y., Heissig, B., Hattori, K. & Rafii, S. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol. Med.9, 109–117 (2003). ArticleCASPubMed Google Scholar
Pompei, F., Polkanov, M. & Wilson, R. Age distribution of cancer in mice: the incidence turnover at old age. Toxicol. Ind. Health17, 7–16 (2001). ArticleCASPubMed Google Scholar
Bayani, J. et al. Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer Res.62, 3466–3476 (2002). CASPubMed Google Scholar
Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science278, 120–123 (1997). ArticleCASPubMed Google Scholar
Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet.22, 37–43 (1999). ArticleCASPubMed Google Scholar
Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nature Genet.29, 418–425 (2001). ArticleCASPubMed Google Scholar
Reilly, K. M., Loisel, D. A., Bronson, R. T., McLaughlin, M. E. & Jacks, T. Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nature Genet.26, 109–113 (2000). ArticleCASPubMed Google Scholar