Torres, C. R. & Hart, G. W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem.259, 3308–3317 (1984). ArticleCASPubMed Google Scholar
Hart, G. W., Housley, M. P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature446, 1017–1022 (2007). ArticleCASPubMed Google Scholar
Carrillo, L. D., Froemming, J. A. & Mahal, L. K. Targeted _in vivo O_-GLcNAc sensors reveal discrete compartment-specific dynamics during signal transduction. J. Biol. Chem.286, 6650–6658 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Hart, G. W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem.80, 825–858 (2011). ArticleCASPubMedPubMed Central Google Scholar
Slawson, C., Copeland, R. J. & Hart, G. W. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem. Sci.35, 547–555 (2010). ArticleCASPubMedPubMed Central Google Scholar
Haltiwanger, R. S., Holt, G. D. & Hart, G. W. Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide β-N-acetylglucosaminyltransferase. J. Biol. Chem.265, 2563–2568 (1990). ArticleCASPubMed Google Scholar
Dong, D. L. & Hart, G. W. Purification and characterization of an O-GlcNAc selective N-acetyl-β-D-glucosaminidase from rat spleen cytosol. J. Biol. Chem.269, 19321–19330 (1994). ArticleCASPubMed Google Scholar
Slawson, C., Pidala, J. & Potter, R. Increased N-acetyl-β-glucosaminidase activity in primary breast carcinomas corresponds to a decrease in N-acetylglucosamine containing proteins. Biochim. Biophys. Acta1537, 147–157 (2001). ArticleCASPubMed Google Scholar
Krzeslak, A., Pomorski, L. & Lipinska, A. Elevation of nucleocytoplasmic β-N-acetylglucosaminidase (O-GlcNAcase) activity in thyroid cancers. Int. J. Mol. Med.25, 643–648 (2010). ArticleCASPubMed Google Scholar
Gu, Y. et al. GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res.70, 6344–6351 (2010). ArticleCASPubMed Google Scholar
Mi, W. et al. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim. Biophys. Acta1812, 514–519 (2011). ArticleCASPubMed Google Scholar
Slawson, C. et al. Perturbations in O-linked β-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J. Biol. Chem.280, 32944–32956 (2005). ArticleCASPubMed Google Scholar
Love, D. C. et al. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc. Natl Acad. Sci. USA107, 7413–7418 (2010). ArticleCASPubMedPubMed Central Google Scholar
Whisenhunt, T. R. et al. Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development. Glycobiology16, 551–563 (2006). ArticleCASPubMed Google Scholar
Kazemi, Z., Chang, H., Haserodt, S., McKen, C. & Zachara, N. E. O-linked β-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3β-dependent manner. J. Biol. Chem.285, 39096–39107 (2010). ArticleCASPubMedPubMed Central Google Scholar
Caldwell, S. A. et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene29, 2831–2842 (2010). ArticleCASPubMed Google Scholar
Housley, M. P. et al. A PGC-1α-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J. Biol. Chem.284, 5148–5157 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ingham, P. W. A gene that regulates the bithorax complex differentially in larval and adult cells of Drosophila. Cell37, 815–823 (1984). ArticleCASPubMed Google Scholar
Sinclair, D. A. et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl Acad. Sci. USA106, 13427–13432 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gambetta, M. C., Oktaba, K. & Muller, J. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science325, 93–96 (2009). ArticleCASPubMed Google Scholar
Mills, A. A. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nature Rev. Cancer10, 669–682 (2010). ArticleCAS Google Scholar
Shah, N. & Sukumar, S. The Hox genes and their roles in oncogenesis. Nature Rev. Cancer10, 361–371 (2010). ArticleCAS Google Scholar
Kelly, W. G. & Hart, G. W. Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell57, 243–251 (1989). ArticleCASPubMed Google Scholar
Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell20, 845–854 (2005). ArticleCASPubMed Google Scholar
Berdasco, M. & Esteller, M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev. Cell19, 698–711 (2010). ArticleCASPubMed Google Scholar
Kelly, W. G., Dahmus, M. E. & Hart, G. W. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J. Biol. Chem.268, 10416–10424 (1993). ArticleCASPubMed Google Scholar
Comer, F. I. & Hart, G. W. O-GlcNAc and the control of gene expression. Biochim. Biophys. Acta1473, 161–171 (1999). ArticleCASPubMed Google Scholar
Comer, F. I. & Hart, G. W. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry40, 7845–7852 (2001). ArticleCASPubMed Google Scholar
Yang, X., Zhang, F. & Kudlow, J. E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell110, 69–80 (2002). ArticleCASPubMed Google Scholar
Cai, Y. et al. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J. Biol. Chem.285, 4268–4272 (2010). ArticleCASPubMed Google Scholar
Mendjan, S. et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell21, 811–823 (2006). ArticleCASPubMed Google Scholar
Cheung, W. D., Sakabe, K., Housley, M. P., Dias, W. B. & Hart, G. W. O-linked β-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J. Biol. Chem.283, 33935–33941 (2008). ArticleCASPubMedPubMed Central Google Scholar
Fujiki, R. et al. GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature459, 455–459 (2009). ArticleCASPubMed Google Scholar
Wang, Z., Pandey, A. & Hart, G. W. Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol. Cell Proteomics6, 1365–1379 (2007). ArticleCASPubMed Google Scholar
Wang, Z. et al. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci. Signal.3, ra2 (2010). PubMedPubMed Central Google Scholar
Capotosti, F. et al. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell144, 376–388 (2011). ArticleCASPubMed Google Scholar
Daou, S. et al. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc. Natl Acad. Sci. USA108, 2747–2752 (2011). ArticleCASPubMedPubMed Central Google Scholar
Heit, R., Rattner, J. B., Chan, G. K. & Hendzel, M. J. G2 histone methylation is required for the proper segregation of chromosomes. J. Cell Sci.122, 2957–2968 (2009). ArticleCASPubMed Google Scholar
Sakabe, K., Wang, Z. & Hart, G. W. β-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc. Natl Acad. Sci. USA107, 19915–19920 (2010). ArticleCASPubMedPubMed Central Google Scholar
Maile, T., Kwoczynski, S., Katzenberger, R. J., Wassarman, D. A. & Sauer, F. TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science304, 1010–1014 (2004). ArticleCASPubMed Google Scholar
Olson, L. E. et al. Homeodomain-mediated β-catenin-dependent switching events dictate cell-lineage determination. Cell125, 593–605 (2006). ArticleCASPubMed Google Scholar
Mayya, V. et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci. Signal.2, ra46 (2009). ArticlePubMed Google Scholar
Perez-Cadahia, B., Drobic, B. & Davie, J. R. H3 phosphorylation: dual role in mitosis and interphase. Biochem. Cell Biol.87, 695–709 (2009). ArticleCASPubMed Google Scholar
Wei, Y., Yu, L., Bowen, J., Gorovsky, M. A. & Allis, C. D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell97, 99–109 (1999). ArticleCASPubMed Google Scholar
Mahadevan, L. C., Willis, A. C. & Barratt, M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell65, 775–783 (1991). ArticleCASPubMed Google Scholar
Chen, Y. X. et al. Alternative O-GlcNAcylation/O-phosphorylation of Ser16 induce different conformational disturbances to the N terminus of murine estrogen receptor β. Chem. Biol.13, 937–944 (2006). ArticleCASPubMed Google Scholar
Ozcan, S., Andrali, S. S. & Cantrell, J. E. Modulation of transcription factor function by O-GlcNAc modification. Biochim. Biophys. Acta1799, 353–364, (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Wang, Z., Gucek, M. & Hart, G. W. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc. Natl Acad. Sci. USA105, 13793–13798 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res.22, 3551–3555 (1994). CASPubMedPubMed Central Google Scholar
Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature378, 206–208 (1995). ArticleCASPubMed Google Scholar
Jones, N. C. et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nature Med.14, 125–133 (2008). ArticleCASPubMed Google Scholar
Chao, C., Herr, D., Chun, J. & Xu, Y. Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J.25, 2615–2622 (2006). CASPubMedPubMed Central Google Scholar
Bech-Otschir, D. et al. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J.20, 1630–1639 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yang, W. H. et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nature Cell Biol.8, 1074–1083 (2006). ArticleCASPubMed Google Scholar
Gregory, M. A., Qi, Y. & Hann, S. R. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem.278, 51606–51612 (2003). ArticleCASPubMed Google Scholar
Chou, T. Y., Dang, C. V. & Hart, G. W. Glycosylation of the c-Myc transactivation domain. Proc. Natl Acad. Sci. USA92, 4417–4421 (1995). ArticleCASPubMedPubMed Central Google Scholar
Chou, T. Y., Hart, G. W. & Dang, C. V. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J. Biol. Chem.270, 18961–18965 (1995). ArticleCASPubMed Google Scholar
Vervoorts, J., Luscher-Firzlaff, J. & Luscher, B. The ins and outs of MYC regulation by posttranslational mechanisms. J. Biol. Chem.281, 34725–34729 (2006). ArticleCASPubMed Google Scholar
Kamemura, K., Hayes, B. K., Comer, F. I. & Hart, G. W. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J. Biol. Chem.277, 19229–19235 (2002). ArticleCASPubMed Google Scholar
Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA101, 6164–6169 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dias, W. B., Cheung, W. D., Wang, Z. & Hart, G. W. Regulation of calcium/calmodulin-dependent kinase IV by O-GlcNAc modification. J. Biol. Chem.284, 21327–21337 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zeidan, Q. & Hart, G. W. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J. Cell Sci.123, 13–22 (2010). ArticleCASPubMed Google Scholar
Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature469, 564–567 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kreppel, L. K., Blomberg, M. A. & Hart, G. W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem.272, 9308–9315 (1997). ArticleCASPubMed Google Scholar
Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature451, 964–969 (2008). ArticleCASPubMed Google Scholar
Kreppel, L. K. & Hart, G. W. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem.274, 32015–32022 (1999). ArticleCASPubMed Google Scholar
Cetinbas, N., Macauley, M. S., Stubbs, K. A., Drapala, R. & Vocadlo, D. J. Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants. Biochemistry45, 3835–3844 (2006). ArticleCASPubMed Google Scholar
Rao, F. V. et al. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J.25, 1569–1578 (2006). ArticleCASPubMedPubMed Central Google Scholar
He, Y., Macauley, M. S., Stubbs, K. A., Vocadlo, D. J. & Davies, G. J. Visualizing the reaction coordinate of an O-GlcNAc hydrolase. J. Am. Chem. Soc.132, 1807–1809 (2010). ArticleCASPubMed Google Scholar
Toleman, C., Paterson, A. J., Whisenhunt, T. R. & Kudlow, J. E. Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities. J. Biol. Chem.279, 53665–53673 (2004). ArticleCAS Google Scholar
Butkinaree, C. et al. Characterization of β-N-acetylglucosaminidase cleavage by caspase-3 during apoptosis. J. Biol. Chem.283, 23557–23566 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yuzwa, S. A. et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nature Chem. Biol.4, 483–490 (2008). ArticleCAS Google Scholar
Dorfmueller, H. C. & van Aalten, D. M. Screening-based discovery of drug-like O-GlcNAcase inhibitor scaffolds. FEBS Lett.584, 694–700 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature386, 623–627 (1997). ArticleCASPubMed Google Scholar
Adams, R. R., Maiato, H., Earnshaw, W. C. & Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol.153, 865–880 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wells, L., Kreppel, L. K., Comer, F. I., Wadzinski, B. E. & Hart, G. W. O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J. Biol. Chem.279, 38466–38470 (2004). ArticleCASPubMed Google Scholar
Sugiyama, K. et al. Aurora-B associated protein phosphatases as negative regulators of kinase activation. Oncogene21, 3103–3111 (2002). ArticleCASPubMed Google Scholar
Iyer, S. P., Akimoto, Y. & Hart, G. W. Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J. Biol. Chem.278, 5399–5409 (2003). ArticleCASPubMed Google Scholar
Iyer, S. P. & Hart, G. W. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J. Biol. Chem.278, 24608–24616 (2003). ArticleCASPubMed Google Scholar
Beck, M. et al. Identification, molecular cloning, and characterization of a novel GABAA receptor-associated protein, GRIF-1. J. Biol. Chem.277, 30079–30090 (2002). ArticleCASPubMed Google Scholar
Wells, L. et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic β-N-acetylglucosaminidase, O-GlcNAcase. J. Biol. Chem.277, 1755–1761 (2002). ArticlePubMed Google Scholar