Parsons, S. L., Lang, M. W. & Steele, R. J. Malignant ascites: a 2-year review from a teaching hospital. Eur. J. Surg. Oncol.22, 237–239 (1996). ArticleCASPubMed Google Scholar
Ayantunde, A. & Parsons, S. Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Ann. Oncol.18, 945–949 (2007). ArticleCASPubMed Google Scholar
Garrison, R. N., Kaelin, L. D., Galloway, R. H. & Heuser, L. S. Malignant ascites. Clinical and experimental observations. Ann. Surg.203, 644–651 (1986). ArticleCASPubMedPubMed Central Google Scholar
Howlader, N. et al. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). National Cancer Institute [online], (2012).
Lopez, R. I. et al. Prognostic factor analysis, for patients with no evidence of disease after initial chemotherapy for advanced epithelial ovarian carcinoma. Int. J. Gynecol. Cancer6, 8–14 (1996). Article Google Scholar
Tan, D. S., Agarwal, R. & Kaye, S. B. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol.7, 925–934 (2006). ArticlePubMed Google Scholar
Bagnato, A. & Rosano, L. Epithelial-mesenchymal transition in ovarian cancer progression: a crucial role for the endothelin axis. Cells Tissues Organs185, 85–94 (2007). ArticleCASPubMed Google Scholar
Auersperg, N., Wong, A. S., Choi, K. C., Kang, S. K. & Leung, P. C. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev.22, 255–288 (2001). CASPubMed Google Scholar
Gardner, M. J., Catterall, J. B., Jones, L. M. & Turner, G. A. Human ovarian tumour cells can bind hyaluronic acid via membrane CD44: a possible step in peritoneal metastasis. Clin. Exp. Metastasis14, 325–334 (1996). ArticleCASPubMed Google Scholar
Strobel, T., Swanson, L. & Cannistra, S. A. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Res.57, 1228–1232 (1997). CASPubMed Google Scholar
Wagner, B. J. et al. Simvastatin reduces tumor cell adhesion to human peritoneal mesothelial cells by decreased expression of VCAM-1 and β1 integrin. Int. J. Oncol.39, 1593–1600 (2011). CASPubMed Google Scholar
Rump, A. et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem.279, 9190–9198 (2004). ArticleCASPubMed Google Scholar
Gubbels, J. A. et al. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol. Cancer566, 50 (2006). ArticleCAS Google Scholar
Renkin, E. M. Some consequences of capillary permeability to macromolecules: Starling's hypothesis reconsidered. Am. J. Physiol.250, H706–710 (1986). CASPubMed Google Scholar
Mutsaers, S. E. Mesothelial cells: their structure, function and role in serosal repair. Respirology7, 171–191 (2002). ArticlePubMed Google Scholar
von Recklinghausen, F. T. Zur fettre sorption. Arch. Pathol. Anat. Physiol.2666, 172 (1863). Article Google Scholar
Sodek, K. L., Murphy, K. J., Brown, T. J. & Ringuette, M. J. Cell-cell and cell-matrix dynamics in intraperitoneal cancer metastasis. Cancer Metastasis Rev.31, 397–414 (2012). ArticleCASPubMedPubMed Central Google Scholar
Holm-Nielsen, P. Pathogenesis of ascites in peritoneal carcinomatosis. Acta Pathol. Microbiol. Scand.33, 10–21 (1953). ArticleCASPubMed Google Scholar
Feldman, G. B., Knapp, R. C., Order, S. E. & Hellman, S. The role of lymphatic obstruction in the formation of ascites in a murine ovarian carcinoma. Cancer Res.32, 1663–1666 (1972). CASPubMed Google Scholar
Nagy, J. A., Herzberg, K. T., Dvorak, J. M. & Dvorak, H. F. Pathogenesis of malignant ascites formation: initiating events that lead to fluid accumulation. Cancer Res.53, 2631–2643 (1993). CASPubMed Google Scholar
Garrison, R. N., Galloway, R. H. & Heuser, L. S. Mechanisms of malignant ascites production. J. Surg. Res.42, 126–132 (1987). ArticleCASPubMed Google Scholar
Hirabayashi, K. & Graham, J. Genesis of ascites in ovarian cancer. Am. J. Obstet. Gynecol.106, 492–497 (1970). ArticleCASPubMed Google Scholar
Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science219, 983–985 (1983). ArticleCASPubMed Google Scholar
Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J.13, 9–22 (1999). ArticleCASPubMed Google Scholar
Geva, E. & Jaffe, R. B. Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertil. Steril.74, 429–438 (2000). ArticleCASPubMed Google Scholar
Zebrowski, B. K. et al. Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann. Surg. Oncol.6, 373–378 (1999). ArticleCASPubMed Google Scholar
Barton, D. P. et al. Angiogenic protein expression in advanced epithelial ovarian cancer. Clin. Cancer Res.3, 1579–1586 (1997). CASPubMed Google Scholar
Kassim, S. K. et al. Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clin. Biochem.37, 363–369 (2004). ArticleCASPubMed Google Scholar
Paley, P. J. et al. Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer80, 98–106 (1997). ArticleCASPubMed Google Scholar
Bamias, A. et al. Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFα in ascites from advanced ovarian cancer: association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecol. Oncol.108, 421–427 (2008). ArticleCASPubMed Google Scholar
Santin, A. D. et al. Secretion of vascular endothelial growth factor in ovarian cancer. Eur. J. Gynaecol. Oncol.20, 177–181 (1999). CASPubMed Google Scholar
Schumacher, J. J. et al. Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Res.67, 3683–3690 (2007). ArticleCASPubMed Google Scholar
Byrne, A. T. et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin. Cancer Res.9, 5721–5728 (2003). CASPubMed Google Scholar
Mesiano, S., Ferrara, N. & Jaffe, R. B. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am. J. Pathol.153, 1249–1256 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yukita, A., Asano, M., Okamoto, T., Mizutani, S. & Suzuki, H. Suppression of ascites formation and re-accumulation associated with human ovarian cancer by an anti-VPF monoclonal antibody in vivo. Anticancer Res.20, 155–160 (2000). CASPubMed Google Scholar
Herr, D. et al. VEGF induces ascites in ovarian cancer patients via increasing peritoneal permeability by downregulation of Claudin 5. Gynecol. Oncol.127, 210–216 (2012). ArticleCASPubMed Google Scholar
Rodewald, M. et al. Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor. Mol. Hum. Reprod.13, 781–789 (2007). ArticleCASPubMed Google Scholar
Saitou, M. et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell11, 4131–4142 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dejana, E. Endothelial cell-cell junctions: happy together. Nature Rev. Mol. Cell Biol.5, 261–270 (2004). ArticleCAS Google Scholar
Takahashi, A., Kondoh, M., Kodaka, M. & Yagi, K. Peptides as tight junction modulators. Curr. Pharm. Des.17, 2699–2703 (2011). ArticleCASPubMed Google Scholar
Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F. & Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol.237, 97–132 (1999). CASPubMed Google Scholar
Esser, S., Lampugnani, M. G., Corada, M., Dejana, E. & Risau, W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J. Cell Sci.111, 1853–1865 (1998). CASPubMed Google Scholar
Horiuchi, A. et al. Hypoxia-induced changes in the expression of VEGF, HIF-1 α and cell cycle-related molecules in ovarian cancer cells. Anticancer Res.22, 2697–2702 (2002). CASPubMed Google Scholar
Hu, Y. L. et al. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J. Natl Cancer Inst.93, 762–768 (2001). ArticleCASPubMed Google Scholar
Kulbe, H. et al. The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res.67, 585–592 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gupta, R. A. et al. Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Res.63, 906–911 (2003). CASPubMed Google Scholar
Stadlmann, S. et al. Ovarian carcinoma cells and IL-1β-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecol. Oncol.97, 784–789 (2005). ArticleCASPubMed Google Scholar
Belotti, D. et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res.63, 5224–5229 (2003). CASPubMed Google Scholar
Chen, Y., Gou, X., Ke, X., Cui, H. & Chen, Z. Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I. PLoS ONE766, e40965 (2012). ArticleCAS Google Scholar
Liu, L. Z. et al. Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic. Biol. Med.41, 1521–1533 (2006). ArticleCASPubMed Google Scholar
Matei, D. et al. PDGF BB induces VEGF secretion in ovarian cancer. Cancer Biol. Ther.6, 1951–1959 (2007). ArticleCASPubMed Google Scholar
Liao, S. et al. TGF-β blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Clin. Cancer Res.17, 1415–1424 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mills, G. B., May, C., McGill, M., Roifman, C. M. & Mellors, A. A. Putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res.48, 1066–1071 (1988). CASPubMed Google Scholar
Fang, X. et al. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J. Biol. Chem.279, 9653–9661 (2004). ArticleCASPubMed Google Scholar
Murph, M. M. et al. Lysophosphatidic acid-induced transcriptional profile represents serous epithelial ovarian carcinoma and worsened prognosis. PLoS ONE4, e5583 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Jankowski, M. Autotaxin: its role in biology of melanoma cells and as a pharmacological target. Enzyme Res.19, 48–57 (2011). Google Scholar
Bast, R. C. Jr, Hennessy, B. & Mills, G. B. The biology of ovarian cancer: new opportunities for translation. Nature Rev. Cancer9, 415–428 (2009). ArticleCAS Google Scholar
Mills, G. B. & Moolenaar, W. H. The emerging role of lysophosphatidic acid in cancer. Nature Rev. Cancer3, 582–591 (2003). ArticleCAS Google Scholar
Abrahams, V. M. et al. Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res.63, 5573–5581 (2003). CASPubMed Google Scholar
Webb, T. J. et al. Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res.72, 3744–3752 (2012). ArticleCASPubMedPubMed Central Google Scholar
Milliken, D., Scotton, C., Raju, S., Balkwill, F. & Wilson, J. Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin. Cancer Res.8, 1108–1114 (2002). CASPubMed Google Scholar
Guo, Y. et al. Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clin. Cancer Res.16, 5759–5769 (2010). ArticleCASPubMed Google Scholar
Matte, I., Lane, D., Laplante, C., Rancourt, C. & Piche, A. Profiling of cytokines in human epithelial ovarian cancer ascites. Am. J. Cancer Res.2, 566–580 (2012). CASPubMedPubMed Central Google Scholar
Penson, R. T. et al. Cytokines IL-1β, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFα in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel. Int. J. Gynecol. Cancer10, 33–41 (2000). ArticlePubMed Google Scholar
Kryczek, I., Grybos, M., Karabon, L., Klimczak, A. & Lange, A. IL-6 production in ovarian carcinoma is associated with histiotype and biological characteristics of the tumour and influences local immunity. Br. J. Cancer82, 621–628 (2000). ArticleCASPubMedPubMed Central Google Scholar
Huang, S., Robinson, J. B., DeGuzman, A., Bucana, C. D. & Fidler, I. J. Blockade of nuclear factor-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res.60, 5334–5339 (2000). CASPubMed Google Scholar
Yoneda, J. et al. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J. Natl Cancer Institute90, 447–454 (1998). ArticleCAS Google Scholar
Obata, N., Tamakoshi, K., Shibata, K., Kikkawa, F. & Tomoda, Y. Effects of interleukin-6 on in vitro cell attachment, migration and invasion of human carcinoma. Anticancer Res.17, 337–342 (1997). CASPubMed Google Scholar
Woolery, K. T. & Kruk, P. A. Ovarian epithelial-stromal interactions: role of interleukins 1 and 6. Obstet. Gynecol. Int.35, 84–93 (2011). Google Scholar
Nilsson, M. B., Langley, R. R. & Fidler, I. J. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res.65, 10794–10800 (2005). ArticleCASPubMedPubMed Central Google Scholar
Alberti, C. et al. Ligand-dependent EGFR activation induces the co-expression of IL-6 and PAI-1 via the NFkB pathway in advanced-stage epithelial ovarian cancer. Oncogene31, 4139–4149 (2011). ArticlePubMedCAS Google Scholar
Lane, D., Matte, I., Rancourt, C. & Piche, A. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer1166, 210 (2011). ArticleCAS Google Scholar
Naldini, A. et al. Identification of thrombin-like activity in ovarian cancer associated ascites and modulation of multiple cytokine networks. Thromb. Haemost.106, 705–711 (2011). ArticleCASPubMed Google Scholar
Gubbels, J. A. et al. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol. Cancer966, 11 (2010). ArticleCAS Google Scholar
Sica, A., Saccani, A. & Mantovani, A. Tumor-associated macrophages: a molecular perspective. Int. Immunopharmacol.2, 1045–1054 (2002). ArticleCASPubMed Google Scholar
Hagemann, T. et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J. Immunol.176, 5023–5032 (2006). ArticleCASPubMed Google Scholar
Balkwill, F. Cancer and the chemokine network. Nature Rev. Cancer4, 540–550 (2004). ArticleCAS Google Scholar
Wang, E. et al. Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clin. Cancer Res.11, 113–122 (2005). CASPubMed Google Scholar
Lin, Y. G. et al. EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer109, 332–340 (2007). ArticleCASPubMed Google Scholar
Niu, G. et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene21, 2000–2008 (2002). ArticleCASPubMed Google Scholar
Rosen, D. G. et al. The role of constitutively active signal transducer and activator of transcription 3 in ovarian tumorigenesis and prognosis. Cancer107, 2730–2740 (2006). ArticleCASPubMed Google Scholar
Lane, D., Robert, V., Grondin, R., Rancourt, C. & Piche, A. Malignant ascites protect against TRAIL-induced apoptosis by activating the PI3K/Akt pathway in human ovarian carcinoma cells. Int. J. Cancer121, 1227–1237 (2007). ArticleCASPubMed Google Scholar
Lane, D., Goncharenko-Khaider, N., Rancourt, C. & Piche, A. Ovarian cancer ascites protects from TRAIL-induced cell death through αvβ5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene29, 3519–3531 (2010). ArticleCASPubMed Google Scholar
Goncharenko-Khaider, N., Matte, I., Lane, D., Rancourt, C. & Piche, A. Ovarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis. Mol. Cancer1166, 84 (2012). ArticleCAS Google Scholar
Peart, T. M., Correa, R. J., Valdes, Y. R., Dimattia, G. E. & Shepherd, T. G. BMP signalling controls the malignant potential of ascites-derived human epithelial ovarian cancer spheroids via AKT kinase activation. Clin. Exp. Metastasis29, 293–313 (2012). ArticleCASPubMed Google Scholar
Bookman, M. A. et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a Phase III Trial of the Gynecologic Cancer Intergroup. J. Clin. Oncol.27, 1419–1425 (2009). ArticleCASPubMedPubMed Central Google Scholar
De Placido, S. et al. Topotecan compared with no therapy after response to surgery and carboplatin/paclitaxel in patients with ovarian cancer: Multicenter Italian Trials in Ovarian Cancer (MITO-1) randomized study. J. Clin. Oncol.22, 2635–2642 (2004). ArticleCASPubMed Google Scholar
du Bois, A. et al. Addition of epirubicin as a third drug to carboplatin-paclitaxel in first-line treatment of advanced ovarian cancer: a prospectively randomized gynecologic cancer intergroup trial by the Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group and the Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens. J. Clin. Oncol.24, 1127–1135 (2006). ArticleCASPubMed Google Scholar
Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. New Engl. J. Med.365, 2484–2496 (2011). ArticleCASPubMed Google Scholar
Burger, R. A. et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. New Engl. J. Med.365, 2473–2483 (2011). ArticleCASPubMed Google Scholar
Kristensen, G. P. et al. Result of interim analysis of overall survival in the GCIG ICON7 phase III randomized trial of bevacizumab in women with newly diagnosed ovarian cancer. J. Clin. Oncol. Abstr.29, LBA5006 (2011). Article Google Scholar
Aghajanian, C. et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J. Clin. Oncol.30, 2039–2045 (2012). ArticleCASPubMedPubMed Central Google Scholar
Pujade-Lauraine, E. et al. AURELIA: a randomized phase III trial evaluating bevacizumab (BEV) plus chemotherapy (CT) for platinum (PT)-resistant recurrent ovarian cancer (OC). J. Clin. Oncol. Abstr.30, LBA5002 (2012). Article Google Scholar
Sennino, B. & McDonald, D. M. Controlling escape from angiogenesis inhibitors. Nature Rev. Cancer12, 699–709 (2012). ArticleCAS Google Scholar
Runyon, B. A. Management of adult patients with ascites due to cirrhosis: an update. Hepatology49, 2087–2107 (2009). ArticlePubMed Google Scholar
Lee, C. W., Bociek, G. & Faught, W. A survey of practice in management of malignant ascites. J. Pain Symptom Manage.16, 96–101 (1998). ArticleCASPubMed Google Scholar
Becker, G., Galandi, D. & Blum, H. E. Malignant ascites: systematic review and guideline for treatment. Eur. J. Cancer42, 589–597 (2006). ArticlePubMed Google Scholar
Pockros, P. J., Esrason, K. T., Nguyen, C., Duque, J. & Woods, S. Mobilization of malignant ascites with diuretics is dependent on ascitic fluid characteristics. Gastroenterology103, 1302–1306 (1992). ArticleCASPubMed Google Scholar
Cavazzoni, E., Bugiantella, W., Graziosi, L., Franceschini, M. S. & Donini, A. Malignant ascites: pathophysiology and treatment. Int. J. Clin. Oncol. 31 Mar 2012 (doi:10.1007/s10147-012-0396-6).
Kalambokis, G. et al. Renal effects of treatment with diuretics, octreotide or both, in non-azotemic cirrhotic patients with ascites. Nephrol. Dial. Transplant.20, 1623–1629 (2005). ArticleCASPubMed Google Scholar
Jatoi, A. et al. A pilot study of long-acting octreotide for symptomatic malignant ascites. Oncology82, 315–320 (2012). ArticleCASPubMed Google Scholar
Dedrick, R. L., Myers, C. E., Bungay, P. M. & DeVita, V. T. Jr. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat. Rep.62, 1–11 (1978). CASPubMed Google Scholar
Armstrong, D. K. et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med.354, 34–43 (2006). ArticleCASPubMed Google Scholar
Ostrowski, M. J. An assessment of the long-term results of controlling the reaccumulation of malignant effusions using intracavity bleomycin. Cancer57, 721–727 (1986). ArticleCASPubMed Google Scholar
Maiche, A. G. Management of peritoneal effusions with intracavitary mitoxantrone or bleomycin. Anticancer Drugs5, 305–308 (1994). ArticleCASPubMed Google Scholar
Link, K. H. et al. Intraperitoneal chemotherapy with mitoxantrone in malignant ascites. Surg. Oncol. Clin. N. Am.12, 865–872 (2003). ArticleCASPubMed Google Scholar
Schilsky, R. L. et al. Phase I clinical and pharmacologic study of intraperitoneal cisplatin and fluorouracil in patients with advanced intraabdominal cancer. J. Clin. Oncol.8, 2054–2061 (1990). ArticleCASPubMed Google Scholar
Mackey, J. R., Wood, L., Nabholtz, J., Jensen, J. & Venner, P. A phase II trial of triamcinolone hexacetanide for symptomatic recurrent malignant ascites. J. Pain Symptom Manage.19, 193–199 (2000). ArticleCASPubMed Google Scholar
Stuart, G. C., Nation, J. G., Snider, D. D. & Thunberg, P. Intraperitoneal interferon in the management of malignant ascites. Cancer71, 2027–2030 (1993). ArticleCASPubMed Google Scholar
Rath, U. et al. Effect of intraperitoneal recombinant human tumour necrosis factor α on malignant ascites. Eur. J. Cancer27, 121–125 (1991). ArticleCASPubMed Google Scholar
Heiss, M. M. et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int. J. Cancer127, 2209–2221 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ott, M. G. et al. Humoral response to catumaxomab correlates with clinical outcome: results of the pivotal phase II/III study in patients with malignant ascites. Int. J. Cancer130, 2195–2203 (2012). ArticleCASPubMed Google Scholar
Beattie, G. J. & Smyth, J. F. Phase I study of intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascites. Clin. Cancer Res.4, 1899–1902 (1998). CASPubMed Google Scholar
Numnum, T. M., Rocconi, R. P., Whitworth, J. & Barnes, M. N. The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian carcinoma. Gynecol. Oncol.102, 425–428 (2006). ArticleCASPubMed Google Scholar
El-Shami, K., Elsaid, A. & El-Kerm, Y. Open-label safety and efficacy pilot trial of intraperitoneal bevacizumab as palliative treatment in refractory malignant ascites. J. Clin. Oncol.25, 9043 (2007). Google Scholar
Hamilton, C. A. et al. Intraperitoneal bevacizumab for the palliation of malignant ascites in refractory ovarian cancer. Gynecol. Oncol.111, 530–532 (2008). ArticleCASPubMed Google Scholar
Bellati, F. et al. Complete remission of ovarian cancer induced intractable malignant ascites with intraperitoneal bevacizumab. Immunological observations and a literature review. Invest. New Drugs28, 887–894 (2010). ArticleCASPubMed Google Scholar
Colombo, N. et al. A phase II study of aflibercept in patients with advanced epithelial ovarian cancer and symptomatic malignant ascites. Gynecol. Oncol.125, 42–47 (2012). ArticleCASPubMed Google Scholar
Gotlieb, W. H. et al. Intravenous aflibercept for treatment of recurrent symptomatic malignant ascites in patients with advanced ovarian cancer: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Oncol.13, 154–162 (2012). ArticleCASPubMed Google Scholar
Mamada, Y. et al. Peritoneovenous shunts for palliation of malignant ascites. J. Nippon Med. Sch.74, 355–358 (2007). ArticlePubMed Google Scholar
White, M. A., Agle, S. C., Padia, R. K. & Zervos, E. E. Denver peritoneovenous shunts for the management of malignant ascites: a review of the literature in the post LeVeen Era. Am. Surg.77, 1070–1075 (2011). PubMed Google Scholar
Saiz-Mendiguren, R. et al. Permanent tunneled drainage for malignant ascites: initial experience with the PleurX® catheter. Radiologia52, 541–545 (2010). ArticleCASPubMed Google Scholar
Fleming, N. D., Alvarez-Secord, A., Von Gruenigen, V., Miller, M. J. & Abernethy, A. P. Indwelling catheters for the management of refractory malignant ascites: a systematic literature overview and retrospective chart review. J. Pain Symptom Manage.38, 341–349 (2009). ArticlePubMed Google Scholar
Tapping, C. R., Ling, L. & Razack, A. PleurX drain use in the management of malignant ascites: safety, complications, long-term patency and factors predictive of success. Br. J. Radiol85, 623–628 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kmietowicz, Z. Cancer patients should have access to device to treat fluid retention at home, says NICE. BMJ344, e2272 (2012). ArticlePubMed Google Scholar
Puiffe, M.-L. et al. Characterization of ovarian cancer ascites on cell. Invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia9, 820–829 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. m. & Kohn, E. C. Proteomics as a guiding tool for more effective personalized therapy. Ann. Oncol.21, 205–210 (2010). Article Google Scholar
Morozova, O. & Marra, M. A. Applications of next-generation sequencing technologies in functional genomics. Genomics92, 255–264 (2008). ArticleCASPubMed Google Scholar
Hetland, T. E. et al. Class III β-tubulin expression in advanced-stage serous ovarian carcinoma effusions is associated with poor survival and primary chemoresistance. Hum. Pathol.42, 1019–1026 (2011). ArticleCASPubMed Google Scholar
Gillet, J.-P. et al. Clinical relevance of multidrug resistance gene expression in ovarian serous carcinoma effusions. Mol. Pharm.8, 2080–2088 (2011). ArticleCASPubMedPubMed Central Google Scholar
Shepherd, T. G., Thériault, B. L., Campbell, E. J. & Nachtigal, M. W. Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nature Protoc.1, 2643–2649 (2007). ArticleCAS Google Scholar
Hu, L., McArthur, C. & Jaffe, R. B. Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br. J. Cancer102, 1276–1283 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mukhopadhyay, A. et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin. Cancer Res.16, 2344–2351 (2010). ArticleCASPubMed Google Scholar
Fong, P. C. et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol.28, 2512–2519 (2010). ArticleCASPubMed Google Scholar
Elattar, A. et al. Androgen receptor expression is a biological marker for androgen sensitivity in high grade serous epithelial ovarian cancer. Gynecol. Oncol.124, 142–147 (2012). ArticleCASPubMed Google Scholar
Carden, C. P. et al. The association of PI3 kinase signaling and chemoresistance in advanced ovarian cancer. Mol. Cancer Ther.11, 1609–1617 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rizzo, S. et al. Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol. Cancer Ther.10, 325–335 (2011). ArticleCASPubMedPubMed Central Google Scholar
Moserle, L. et al. The side population of ovarian cancer cells is a primary target of IFN-α antitumor effects. Cancer Res.68, 5658–5668 (2008). ArticleCASPubMed Google Scholar
Meirelles, K. et al. Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proc. Natl Acad. Sci. USA109, 2358–2363 (2012). ArticleCASPubMedPubMed Central Google Scholar
Latifi, A. et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS ONE766, e46858 (2012). ArticleCAS Google Scholar
Davidson, B. Proteomic analysis of malignant ovarian cancer effusions as a tool for biologic and prognostic profiling. Clin. Cancer Res.12, 791–799 (2006). ArticleCASPubMed Google Scholar
Yap, T. A., Carden, C. P. & Kaye, S. B. Beyond chemotherapy: targeted therapies in ovarian cancer. Nature Rev. Cancer9, 167–181 (2009). ArticleCAS Google Scholar
Lee, J.-M., Han, J. J., Altwerger, G. & Kohn, E. C. Proteomics and biomarkers in clinical trials for drug development. J. Proteomics74, 2632–2641 (2011). ArticleCASPubMedPubMed Central Google Scholar
Runyon, B. A. et al. The serum-ascites albumin gradient is superior to the exudate-transudate concept in the differential diagnosis of ascites. Ann. Intern. Med.117, 215–220 (1992). ArticleCASPubMed Google Scholar
Sheid, B. Angiogenic effects of macrophages isolated from ascitic fluid aspirated from women with advanced ovarian cancer. Cancer Lett.62, 153–158 (1992). ArticleCASPubMed Google Scholar
Cattau, E. L. Jr, Benjamin, S. B., Knuff, T. E. & Castell, D. O. The accuracy of the physical examination in the diagnosis of suspected ascites. JAMA247, 1164–1166 (1982). ArticlePubMed Google Scholar
Inadomi, J., Cello, J. P. & Koch, J. Ultrasonographic determination of ascitic volume. Hepatology24, 549–551 (1996). ArticleCASPubMed Google Scholar
Akriviadis, E. A. Hemoperitoneum in patients with ascites. Am. J. Gastroenterol.92, 567–575 (1997). CASPubMed Google Scholar
von Riedenauer, W. B., Janjua, S. A., Kwon, D. S., Zhang, Z. & Velanovich, V. Immunohistochemical identification of primary peritoneal serous cystadenocarcinoma mimicking advanced colorectal carcinoma: a case report. J. Med. Case Rep.166, 150 (2007). Article Google Scholar