Pancreatic cancer biology and genetics (original) (raw)
Niederhuber, J. E., Brennan, M. F. & Menck, H. R. The National Cancer Data Base report on pancreatic cancer. Cancer76, 1671–1677 (1995). ArticleCASPubMed Google Scholar
Warshaw, A. L. & Fernandez-del Castillo, C. Pancreatic carcinoma. N. Engl. J. Med.326, 455–465 (1992). ArticleCASPubMed Google Scholar
Ahrendt, S. A. & Pitt, H. A. Surgical management of pancreatic cancer. Oncology16, 725–734; discussion 734, 736–738, 740, 743 (2002). PubMed Google Scholar
Kern, S. et al. A white paper: the product of a pancreas cancer think tank. Cancer Res.61, 4923–4932 (2001). CASPubMed Google Scholar
Anderson, K. E., Potter, J. D. & Mack, T. M. in Cancer Epidemiology and Prevention (eds Schottenfeld, D. & Fraumeni, J. J.) 725–771 (Oxford University Press, New York, 1996). Google Scholar
Lynch, H. T. et al. Familial pancreatic cancer: a review. Semin. Oncol.23, 251–275 (1996). CASPubMed Google Scholar
Jaffee, E. M., Hruban, R. H., Canto, M. & Kern, S. E. Focus on pancreas cancer. Cancer Cell2, 25–28 (2002). ArticleCASPubMed Google Scholar
Eberle, M. A. et al. A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34. Am. J. Hum. Genet.70, 1044–1048 (2002). Linkage mapping of a new familial pancreatic cancer gene. ArticleCASPubMedPubMed Central Google Scholar
Lowenfels, A. B. et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J. Natl Cancer Inst.89, 442–446 (1997). ArticleCASPubMed Google Scholar
Whitcomb, D. C. et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nature Genet.14, 141–145 (1996). ArticleCASPubMed Google Scholar
Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell87, 159–170 (1996). ArticleCASPubMed Google Scholar
Cubilla, A. L. & Fitzgerald, P. J. Morphological lesions associated with human primary invasive nonendocrine pancreas cancer. Cancer Res.36, 2690–2698 (1976). A landmark study providing histological evidence for a ductal cell of origin for pancreatic adenocarcinoma. CASPubMed Google Scholar
Klimstra, D. S. & Longnecker, D. S. K-ras mutations in pancreatic ductal proliferative lesions. Am. J. Pathol.145, 1547–1550 (1994). CASPubMedPubMed Central Google Scholar
Hruban, R. H. et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am. J. Surg. Pathol.25, 579–586 (2001). ArticleCASPubMed Google Scholar
Klein, W. M., Hruban, R. H., Klein-Szanto, A. J. & Wilentz, R. E. Direct correlation between proliferative activity and dysplasia in pancreatic intraepithelial neoplasia (PanIN): additional evidence for a recently proposed model of progression. Mod. Pathol.15, 441–447 (2002). ArticlePubMed Google Scholar
Moskaluk, C. A., Hruban, R. H. & Kern, S. E. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res.57, 2140–2143 (1997). CASPubMed Google Scholar
Luttges, J. et al. Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am. J. Pathol.158, 1677–1683 (2001). References 16–18 document common mutational profiles in PanINs and pancreatic adenocarcinomas occurring in the same patient, providing genetic evidence that PanINs are progenitors of adenocarcinomas. ArticleCASPubMedPubMed Central Google Scholar
Wilentz, R. E. et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res.60, 2002–2006 (2000). CASPubMed Google Scholar
Heinmoller, E. et al. Molecular analysis of microdissected tumors and preneoplastic intraductal lesions in pancreatic carcinoma. Am. J. Pathol.157, 83–92 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rozenblum, E. et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res.57, 1731–1734 (1997). Mutational profile of a large series of pancreatic adenocarcinomas. CASPubMed Google Scholar
Biankin, A. V. et al. Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res.61, 8830–8837 (2001). CASPubMed Google Scholar
Shields, J. M., Pruitt, K., McFall, A., Shaub, A. & Der, C. J. Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol.10, 147–154 (2000). ArticleCASPubMed Google Scholar
Korc, M. et al. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J. Clin. Invest.90, 1352–1360 (1992). ArticleCASPubMedPubMed Central Google Scholar
Barton, C. M., Hall, P. A., Hughes, C. M., Gullick, W. J. & Lemoine, N. R. Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer. J. Pathol.163, 111–116 (1991). ArticleCASPubMed Google Scholar
Friess, H. et al. Pancreatic cancer: the potential clinical relevance of alterations in growth factors and their receptors. J. Mol. Med.74, 35–42 (1996). ArticleCASPubMed Google Scholar
Watanabe, M., Nobuta, A., Tanaka, J. & Asaka, M. An effect of K-ras gene mutation on epidermal growth factor receptor signal transduction in PANC-1 pancreatic carcinoma cells. Int. J. Cancer67, 264–268 (1996). ArticleCASPubMed Google Scholar
Sibilia, M. et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell102, 211–220 (2000). ArticleCASPubMed Google Scholar
Day, J. D. et al. Immunohistochemical evaluation of HER-2/ neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms. Hum. Pathol.27, 119–124 (1996). ArticleCASPubMed Google Scholar
Wagner, M. et al. Expression of a truncated EGF receptor is associated with inhibition of pancreatic cancer cell growth and enhanced sensitivity to cisplatinum. Int. J. Cancer68, 782–787 (1996). ArticleCASPubMed Google Scholar
Overholser, J. P., Prewett, M. C., Hooper, A. T., Waksal, H. W. & Hicklin, D. J. Epidermal growth factor receptor blockade by antibody IMC-C225 inhibits growth of a human pancreatic carcinoma xenograft in nude mice. Cancer89, 74–82 (2000). ArticleCASPubMed Google Scholar
Whelan, A. J., Bartsch, D. & Goodfellow, P. J. Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N. Engl. J. Med.333, 975–977 (1995). ArticleCASPubMed Google Scholar
Goldstein, A. M. et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N. Engl. J. Med.333, 970–974 (1995). ArticleCASPubMed Google Scholar
Goldstein, A. M., Struewing, J. P., Chidambaram, A., Fraser, M. C. & Tucker, M. A. Genotype-phenotype relationships in U. S. melanoma-prone families with CDKN2A and CDK4 mutations. J. Natl Cancer Inst.92, 1006–1010 (2000). ArticleCASPubMed Google Scholar
Lynch, H. T. et al. Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families: the familial atypical mole melanoma-pancreatic carcinoma syndrome. Cancer94, 84–96 (2002). ArticleCASPubMed Google Scholar
Borg, A. et al. High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. J. Natl Cancer Inst.92, 1260–1266 (2000). ArticleCASPubMed Google Scholar
Sherr, C. J. The INK4A/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol.2, 731–737 (2001). ArticleCAS Google Scholar
Liu, L. et al. Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nature Genet.21, 128–132 (1999). ArticlePubMedCAS Google Scholar
Lal, G. et al. Patients with both pancreatic adenocarcinoma and melanoma may harbor germline CDKN2A mutations. Genes Chromosom. Cancer27, 358–361 (2000). ArticleCASPubMed Google Scholar
Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature413, 83–86 (2001). ArticleCASPubMed Google Scholar
Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature413, 86–91 (2001). References 40 and 41 report the phenotypes of Ink4a-knockout mice. ArticleCASPubMed Google Scholar
Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene15, 203–211 (1997). ArticleCASPubMed Google Scholar
Nielsen, G. P. et al. Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab. Invest.79, 1137–1143 (1999). CASPubMed Google Scholar
Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock? Cell102, 407–410 (2000). ArticleCASPubMed Google Scholar
Ramirez, R. D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev.15, 398–403 (2001). ArticleCASPubMedPubMed Central Google Scholar
Schmitt, C. A. et al. A senescence program controlled by p53 and p16(INK4a) contributes to the outcome of cancer therapy. Cell109, 335–346 (2002). ArticleCASPubMed Google Scholar
Zhu, J., Woods, D., McMahon, M. & Bishop, J. M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev.12, 2997–3007 (1998). ArticleCASPubMedPubMed Central Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). References 47–49 provide an explanation for the oncogenic cooperation of activatedRASgenes and loss of theINK4A/ARF locus. ArticleCASPubMed Google Scholar
Luttges, J. et al. The K-ras mutation pattern in pancreatic ductal adenocarcinoma usually is identical to that in associated normal, hyperplastic, and metaplastic ductal epithelium. Cancer85, 1703–1710 (1999). ArticleCASPubMed Google Scholar
Laghi, L. et al. Common occurrence of multiple K-RAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancers. Oncogene21, 4301–4306 (2002). ArticleCASPubMed Google Scholar
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev.15, 3243–3248 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev.15, 3249–3262 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev.9, 22–30 (1999). ArticleCASPubMed Google Scholar
Maser, R. S. & DePinho, R. A. Connecting chromosomes, crisis, and cancer. Science297, 565–569 (2002). ArticleCASPubMed Google Scholar
Gorunova, L. et al. Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosom. Cancer23, 81–99 (1998). ArticleCASPubMed Google Scholar
Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature406, 641–645 (2000). ArticleCASPubMed Google Scholar
Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell97, 527–538 (1999). ArticleCASPubMed Google Scholar
Gisselsson, D. et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl Acad. Sci. USA97, 5357–5362 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gisselsson, D. et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc. Natl Acad. Sci. USA98, 12683–12688 (2001). Evidence for a role of telomere attrition in promoting chromosomal instability in the progression of pancreatic adenocarcinoma. ArticleCASPubMedPubMed Central Google Scholar
Suehara, N. et al. Telomerase elevation in pancreatic ductal carcinoma compared to nonmalignant pathological states. Clin. Cancer Res.3, 993–998 (1997). CASPubMed Google Scholar
Venkitaraman, A. R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell108, 171–182 (2002). ArticleCASPubMed Google Scholar
Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J. Natl Cancer Inst.91, 1310–1316 (1999).
Goggins, M., Hruban, R. H. & Kern, S. E. BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am. J. Pathol.156, 1767–1771 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sato, N. et al. Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet. Cytogenet.126, 13–19 (2001). ArticleCASPubMed Google Scholar
Aarnio, M., Mecklin, J. P., Aaltonen, L. A., Nystrom-Lahti, M. & Jarvinen, H. J. Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Int. J. Cancer64, 430–433 (1995). ArticleCASPubMed Google Scholar
Goggins, M. et al. Pancreatic adenocarcinomas with DNA replication errors (RER+) are associated with wild-type K-ras and characteristic histopathology. Poor differentiation, a syncytial growth pattern, and pushing borders suggest RER+. Am. J. Pathol.152, 1501–1507 (1998). CASPubMedPubMed Central Google Scholar
Mahlamaki, E. H. et al. Comparative genomic hybridization reveals frequent gains of 20q, 8q, 11q, 12p, and 17q, and losses of 18q, 9p, and 15q in pancreatic cancer. Genes Chromosom. Cancer20, 383–391 (1997). ArticleCASPubMed Google Scholar
Peltomaki, P. & de la Chapelle, A. Mutations predisposing to hereditary nonpolyposis colorectal cancer. Adv. Cancer Res.71, 93–119 (1997). ArticleCASPubMed Google Scholar
Lynch, H. T., Voorhees, G. J., Lanspa, S. J., McGreevy, P. S. & Lynch, J. F. Pancreatic carcinoma and hereditary nonpolyposis colorectal cancer: a family study. Br. J. Cancer52, 271–273 (1985). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, H. et al. Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res.61, 3139–3144 (2001). CASPubMed Google Scholar
Wilentz, R. E. et al. Genetic, immunohistochemical, and clinical features of medullary carcinoma of the pancreas: a newly described and characterized entity. Am. J. Pathol.156, 1641–1651 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hahn, S. A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science271, 350–353 (1996). Identification of SMAD4/DPC4. ArticleCASPubMed Google Scholar
Massague, J., Blain, S. W. & Lo, R. S. TGF-β signaling in growth control, cancer, and heritable disorders. Cell103, 295–309 (2000). ArticleCASPubMed Google Scholar
Sirard, C. et al. Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor beta-related signaling. J. Biol. Chem.275, 2063–2070 (2000). ArticleCASPubMed Google Scholar
Jonson, T. et al. Altered expression of TGF-β receptors and mitogenic effects of TGF-β in pancreatic carcinomas. Int. J. Oncol.19, 71–81 (2001). CASPubMed Google Scholar
Dai, J. L. et al. Transforming growth factor-beta responsiveness in DPC4/SMAD4-null cancer cells. Mol. Carcinog.26, 37–43 (1999). ArticleCASPubMed Google Scholar
Giehl, K., Seidel, B., Gierschik, P., Adler, G. & Menke, A. TGF-β1 represses proliferation of pancreatic carcinoma cells which correlates with Smad4-independent inhibition of ERK activation. Oncogene19, 4531–4541 (2000). ArticleCASPubMed Google Scholar
Rowland-Goldsmith, M. A., Maruyama, H., Kusama, T., Ralli, S. & Korc, M. Soluble type II transforming growth factor-beta (TGF-beta) receptor inhibits TGF-beta signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation. Clin. Cancer Res.7, 2931–2940 (2001). CASPubMed Google Scholar
Hemminki, A. et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature391, 184–187 (1998). ArticleCASPubMed Google Scholar
Solcia, E., Capella, C. & Kloppel, G. Tumors of the Pancreas (ed. Rosai, J.) (Armed Forces Institute for Pathology, Washington DC, 1995). Google Scholar
Pour, P. M. The role of langerhans islets in pancreatic ductal adenocarcinoma. Front Biosci.2, d271–282 (1997). ArticleCASPubMed Google Scholar
Boardman, L. A. et al. Genetic heterogeneity in Peutz–Jeghers syndrome. Hum. Mutat.16, 23–30 (2000). ArticleCASPubMed Google Scholar
Cooper, H. S. in Pathology of the Gastrointestinal Tract (eds Ming, S.-C. & Goldman, H.) 819–853 (Wiliams & Wilkens, Baltimore, 1998). Google Scholar
Olschwang, S. et al. Peutz–Jeghers disease: most, but not all, families are compatible with linkage to 19p13.3. J. Med. Genet.35, 42–44 (1998). ArticleCASPubMedPubMed Central Google Scholar
Olschwang, S., Boisson, C. & Thomas, G. Peutz–Jeghers families unlinked to STK11/LKB1 gene mutations are highly predisposed to primitive biliary adenocarcinoma. J. Med. Genet.38, 356–360 (2001). ArticleCASPubMedPubMed Central Google Scholar
Klimstra, D. S. in Pancreatic Cancer: Advances in Molecular Pathology, Diagnosis and Clinical Management (eds Sarkar, F. S. & Duggan, M. C.) 21–48 (Eaton Publishing, Natick, Massachusetts, 1998). Google Scholar
Jimenez, R. E. et al. Immunohistochemical characterization of pancreatic tumors induced by dimethylbenzanthracene in rats. Am. J. Pathol.154, 1223–1229 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wagner, M. et al. A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev.15, 286–293 (2001). The first description of a genetically defined mouse model of pancreatic adenocarcinoma. ArticleCASPubMedPubMed Central Google Scholar
Yoshida, T. & Hanahan, D. Murine pancreatic ductal adenocarcinoma produced by in vitro transduction of polyoma middle T oncogene into the islets of Langerhans. Am. J. Pathol.145, 671–684 (1994). CASPubMedPubMed Central Google Scholar
Tosh, D. & Slack, J. M. How cells change their phenotype. Nature Rev. Mol. Cell Biol.3, 187–194 (2002). ArticleCAS Google Scholar
Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell105, 829–841 (2001). ArticleCASPubMed Google Scholar
Elsasser, H.-P., Adler, G. & Kern, H. F. in The Pancreas: Biology, Pathobiology and Disease (Raven Press Ltd, New York, 1993). Google Scholar
Bonner–Weir, S., Stubbs, M., Reitz, P., Taneja, M. & Smith, F. E. in Pancreatic Growth and Regeneration (ed. Sarvetnick, N.) (Karger Landes Systems, Basel, Switzerland, 1997). Google Scholar
Sharma, A. et al. The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes48, 507–513 (1999). ArticleCASPubMed Google Scholar
Vinik, A. I., Pittenger, G. L., Rafaeloff, R., Rosenberg, L. & Duguid, W. in Pancreatic Growth and Regeneration. (ed. Sarvetnick, N.) 183–217 (Karger Landes Systems, Basel, 1997). Google Scholar
Scoggins, C. R. et al. p53-dependent acinar cell apoptosis triggers epithelial proliferation in duct-ligated murine pancreas. Am. J. Physiol. Gastrointest. Liver Physiol.279, G827–G836 (2000). ArticleCASPubMed Google Scholar
Kritzik, M. R. et al. PDX-1 and Msx-2 expression in the regenerating and developing pancreas. J. Endocrinol.163, 523–530 (1999). ArticleCASPubMed Google Scholar
Arnush, M. et al. Growth factors in the regenerating pancreas of γ-interferon transgenic mice. Lab. Invest.74, 985–990 (1996). CASPubMed Google Scholar
Rooman, I., Heremans, Y., Heimberg, H. & Bouwens, L. Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia43, 907–914 (2000). ArticleCASPubMed Google Scholar
Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf. Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell1, 269–277 (2002). ArticleCASPubMed Google Scholar
Lohr, M. et al. Transforming growth factor-β1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res.61, 550–555 (2001). CASPubMed Google Scholar
Schwarte-Waldhoff, I. et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc. Natl Acad. Sci. USA97, 9624–9629 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer1, 46–54 (2001). CAS Google Scholar
Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res.59, 5002–5011 (1999). CASPubMed Google Scholar
Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell108, 135–144 (2002). ArticleCASPubMed Google Scholar
Ornitz, D. M., Hammer, R. E., Messing, A., Palmiter, R. D. & Brinster, R. L. Pancreatic neoplasia induced by SV40 T-antigen expression in acinar cells of transgenic mice. Science238, 188–193 (1987). ArticleCASPubMed Google Scholar
Glasner, S., Memoli, V. & Longnecker, D. S. Characterization of the ELSV transgenic mouse model of pancreatic carcinoma. Histologic type of large and small tumors. Am. J. Pathol.140, 1237–1245 (1992). CASPubMedPubMed Central Google Scholar
Quaife, C. J., Pinkert, C. A., Ornitz, D. M., Palmiter, R. D. & Brinster, R. L. Pancreatic neoplasia induced by Ras expression in acinar cells of transgenic mice. Cell48, 1023–1034 (1987). ArticleCASPubMed Google Scholar
Sandgren, E. P., Quaife, C. J., Paulovich, A. G., Palmiter, R. D. & Brinster, R. L. Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA88, 93–97 (1991). ArticleCASPubMedPubMed Central Google Scholar
Sandgren, E. P. et al. Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Mol. Cell Biol.13, 320–330 (1993). CASPubMedPubMed Central Google Scholar
Bardeesy, N. et al. Obligate roles for p16(Ink4a) and p19(Arf)-p53 in the suppression of murine pancreatic neoplasia. Mol. Cell Biol.22, 635–643 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sotillo, R. et al. Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J.20, 6637–6647 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nature Genet.22, 44–52 (1999). ArticleCASPubMed Google Scholar
Xu, X. et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene19, 1868–1874 (2000). ArticleCASPubMed Google Scholar
Takaku, K. et al. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res.59, 6113–6117 (1999). CASPubMed Google Scholar
Jishage, K. et al. Role of Lkb1, the causative gene of Peutz–Jegher's syndrome, in embryogenesis and polyposis. Proc. Natl Acad. Sci. USA99, 8903–8908 (2002). ArticleCASPubMedPubMed Central Google Scholar
Miyoshi, H. et al. Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res.62, 2261–2266 (2002). CASPubMed Google Scholar
Bardeesy, N. et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature419, 162–167 (2002). ArticleCASPubMed Google Scholar
Jonkers, J. & Berns, A. Conditional mouse models of sporadic cancer. Nature Rev. Cancer2, 251–265 (2002). ArticleCAS Google Scholar
Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development129, 2447–2457 (2002). ArticleCASPubMed Google Scholar
Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature400, 468–472 (1999). ArticleCASPubMed Google Scholar
Hennig, R. et al. 5-lipoxygenase and leukotriene b(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am. J. Pathol.161, 421–428 (2002). ArticleCASPubMedPubMed Central Google Scholar
Maitra, A. et al. Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am. J. Clin. Pathol.118, 194–201 (2002). ArticleCASPubMed Google Scholar
Tucker, O. N. et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res.59, 987–990 (1999). CASPubMed Google Scholar
Anderson, K. E., Johnson, T. W., Lazovich, D. & Folsom, A. R. Association between nonsteroidal anti-inflammatory drug use and the incidence of pancreatic cancer. J. Natl Cancer Inst.94, 1168–1171 (2002). ArticlePubMed Google Scholar
Oshima, M. & Taketo, M. M. COX selectivity and animal models for colon cancer. Curr. Pharm. Des.8, 1021–1034 (2002). ArticleCASPubMed Google Scholar
Ramaswamy, S. & Golub, T. R. DNA microarrays in clinical oncology. J. Clin. Oncol.20, 1932–1941 (2002). ArticleCASPubMed Google Scholar
Argani, P. et al. Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res.61, 4320–4324 (2001). CASPubMed Google Scholar
Iacobuzio-Donahue, C. A. et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am. J. Pathol.160, 1239–1249 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rosty, C. et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res.62, 1868–1875 (2002). CASPubMed Google Scholar
Han, H. et al. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res.62, 2890–2896 (2002). CASPubMed Google Scholar
Githens, S. in The Pancreas: Biology, Pathobiology and Disease (eds Liang, V. & Go, W.) 21–55 (Raven Press Ltd, New York, 1993). Google Scholar
Kim, S. K. & Hebrok, M. Intercellular signals regulating pancreas development and function. Genes Dev.15, 111–127 (2001). ArticleCASPubMed Google Scholar
Kobitsu, K. et al. Shortened telomere length and increased telomerase activity in hamster pancreatic duct adenocarcinomas and cell lines. Mol. Carcinog.18, 153–159 (1997). ArticleCASPubMed Google Scholar
Edlund, H. Organogenesis: pancreatic organogenesis developmental mechanisms and implications for therapy. Nature Rev. Genet.3, 524–532 (2002). ArticleCASPubMed Google Scholar
Hebrok, M., Kim, S. K. & Melton, D. A. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev.12, 1705–1713 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wells, J. M. & Melton, D. A. Vertebrate endoderm development. Annu. Rev. Cell Dev. Biol.15, 393–410 (1999). ArticleCASPubMed Google Scholar
Shen, C. N., Slack, J. M. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biol.2, 879–887 (2000). ArticleCASPubMed Google Scholar
Harada, T. et al. Interglandular cytogenetic heterogeneity detected by comparative genomic hybridization in pancreatic cancer. Cancer Res62, 835–839 (2002). CASPubMed Google Scholar
Giardiello, F. M. et al. Very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology119, 1447–1453 (2000). ArticleCASPubMed Google Scholar
Clarke, A. R., Cummings, M. C. & Harrison, D. J. Interaction between murine germline mutations in p53 and APC predisposes to pancreatic neoplasia but not to increased intestinal malignancy. Oncogene11, 1913–1920 (1995). CASPubMed Google Scholar
Meszoely, I. M., Means, A. L., Scoggins, C. R. & Leach, S. D. Developmental aspects of early pancreatic cancer. Cancer J.7, 242–250 (2001). CASPubMed Google Scholar