Predictive biomarkers: a paradigm shift towards personalized cancer medicine (original) (raw)
American Cancer Society. Lifetime Risk of Developing or Dying From Cancer[online], (2010).
Yabroff, K. R., Warren, J. L. & Brown, M. L. Costs of cancer care in the USA: a descriptive review. Nat. Clin. Pract. Oncol.4, 643–656 (2007). ArticlePubMed Google Scholar
Azorsa, D. O. et al. Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J. Transl. Med.7, 43 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Schilsky, R. L. Personalized medicine in oncology: the future is now. Nat. Rev. Drug Discov.9, 363–366 (2010). ArticleCASPubMed Google Scholar
Fine, B. M. & Amler, L. Predictive biomarkers in the development of oncology drugs: a therapeutic industry perspective. Clin. Pharmacol. Ther.85, 535–538 (2009). ArticleCASPubMed Google Scholar
Duffy, M. J. & Crown, J. A personalized approach to cancer treatment: how biomarkers can help. Clin. Chem.54, 1770–1779 (2008). ArticleCASPubMed Google Scholar
Park, J. W. et al. Rationale for biomarkers and surrogate end points in mechanism-driven oncology drug development. Clin. Cancer Res.10, 3885–3896 (2004). ArticleCASPubMed Google Scholar
Cronin, M. et al. Analytical validation of the Onco_type_ DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin. Chem.53, 1084–1091 (2007). ArticleCASPubMed Google Scholar
Sarker, D. & Workman, P. Pharmacodynamic biomarkers for molecular cancer therapeutics. Adv. Cancer Res.96, 213–268 (2007). ArticleCASPubMed Google Scholar
Ratain, M. J., Schilsky, R. L., Conley, B. A. & Egorin, M. J. Pharmacodynamics in cancer therapy. J. Clin. Oncol.8, 1739–1753 (1990). ArticleCASPubMed Google Scholar
August, J. Market watch: emerging companion diagnostics for cancer drugs. Nat. Rev. Drug Discov.9, 351 (2010). ArticleCASPubMed Google Scholar
Segal, N. H. & Saltz, L. B. Evolving treatment of advanced colon cancer. Annu. Rev. Med.60, 207–219 (2009). ArticleCASPubMed Google Scholar
Badgwell, B. D. et al. Management of bevacizumab-associated bowel perforation: a case series and review of the literature. Ann. Oncol.19, 577–582 (2008). ArticleCASPubMed Google Scholar
Goodsaid, F. & Papaluca, M. Evolution of biomarker qualification at the health authorities. Nat. Biotechnol.28, 441–443 (2010). ArticleCASPubMed Google Scholar
Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell12, 395–402 (2007). ArticleCASPubMed Google Scholar
Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235, 177–182 (1987). ArticleCASPubMed Google Scholar
Dawood, S. et al. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J. Clin. Oncol.28, 92–98 (2010). ArticleCASPubMed Google Scholar
Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med.344, 783–792 (2001). ArticleCASPubMed Google Scholar
Hudis, C. A. Trastuzumab–mechanism of action and use in clinical practice. N. Engl. J. Med.357, 39–51 (2007). ArticleCASPubMed Google Scholar
Bange, J., Zwick, E. & Ullrich, E. Molecular targets for breast cancer therapy and prevention. Nat. Med.7, 548–552 (2001). ArticleCASPubMed Google Scholar
Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med.353, 1673–1684 (2005). ArticleCASPubMed Google Scholar
Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med.353, 1659–1672 (2005). ArticleCASPubMed Google Scholar
Valabrega, G., Montemurro, F. & Aglietta, M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann. Oncol.18, 977–984 (2007). ArticleCASPubMed Google Scholar
Suter, T. M. et al. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J. Clin. Oncol.25, 3859–3865 (2007). ArticleCASPubMed Google Scholar
Muthuswamy, S. K. Trastuzumab resistance: all roads lead to SRC. Nat. Med.17, 416–418 (2011). ArticleCASPubMed Google Scholar
Phillips, K. A. et al. Clinical practice patterns and cost effectiveness of human epidermal growth receptor 2 testing strategies in breast cancer patients. Cancer115, 5166–5174 (2009). ArticlePubMed Google Scholar
Cuadros, M. & Villegas, M. Systematic review of HER2 breast cancer testing. Appl. Immunohistochem. Mol. Morphol.17, 1–7 (2009). ArticleCASPubMed Google Scholar
Perez, E. A. et al. HER2 testing in patients with breast cancer: poor correlation between weak positivity by immunohistochemistry and gene amplification by fluorescence in situ hybridization. Mayo Clin. Proc.77, 148–154 (2002). ArticlePubMed Google Scholar
Stone, R. M. Optimizing treatment of chronic myeloid leukemia: a rational approach. Oncologist9, 259–270 (2004). ArticleCASPubMed Google Scholar
Deininger, M. W. & Druker, B. J. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol. Rev.55, 401–423 (2003). ArticleCASPubMed Google Scholar
Wodarz, D. Heterogeneity in chronic myeloid leukaemia dynamics during imatinib treatment: role of immune responses. Proc. Biol. Sci.277, 1875–1880 (2010). ArticleCASPubMedPubMed Central Google Scholar
Goozner, M. Drug developers unveil strategies aimed at imatinib-resistant CML. J. Natl Cancer Inst.102, 593–595 (2010). ArticleCASPubMed Google Scholar
Breccia, M. Hematology: Nilotinib and dasatinib–new 'magic bullets' for CML? Nat. Rev. Clin. Oncol.7, 557–558 (2010). ArticleCASPubMed Google Scholar
Fuerst, M. L. FDA approves dasatinib for imatinib resistance and intolerance 3 weeks after enthusiastic recommendation from ODAC. Oncol. Times28, 9–10 (2006). Article Google Scholar
Kantarjian, H. et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med.362, 2260–2270 (2010). ArticleCASPubMed Google Scholar
Breccia, M. & Alimena, G. Nilotinib: a second-generation tyrosine kinase inhibitor for chronic myeloid leukemia. Leuk. Res.34, 129–134 (2010). ArticleCASPubMed Google Scholar
Harris, T. Gene and drug matrix for personalized cancer therapy. Nat. Rev. Drug Discov.9, 660 (2010). ArticlePubMedCAS Google Scholar
Weisberg, E., Manley, P. W., Cowan-Jacob, S. W., Hochhaus, A. & Griffin, J. D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer7, 345–356 (2007). ArticleCASPubMed Google Scholar
Terasawa, T., Dahabreh, I. & Trikalinos, T. A. BCR-ABL mutation testing to predict response to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. PLoS Curr.2, RRN1204 (2010). PubMed Google Scholar
Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. The role of companion diagnostics in the development and use of mutation-targeted cancer therapies. Nat. Biotechnol.24, 985–995 (2006). ArticleCASPubMed Google Scholar
Siddiqui, M. A. & Scott, L. J. Imatinib: a review of its use in the management of gastrointestinal stromal tumours. Drugs67, 805–820 (2007). ArticleCASPubMed Google Scholar
Heinrich, M. C. Imatinib treatment of metastatic GIST: don't stop (believing). Lancet Oncol.11, 910–911 (2010). ArticlePubMed Google Scholar
Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol.21, 4342–4349 (2003). ArticleCASPubMed Google Scholar
Ciardiello, F. & Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med.358, 1160–1174 (2008). ArticleCASPubMed Google Scholar
Saltz, L. B. et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol.22, 1201–1208 (2004). ArticleCASPubMed Google Scholar
Lenz, H. J. et al. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J. Clin. Oncol.24, 4914–4921 (2006). ArticleCASPubMed Google Scholar
Santini, D. Molecular predictive factors of response to anti-EGFR antibodies in colorectal cancer patients. Eur. J. Cancer Suppl.6, 86–90 (2008). Article Google Scholar
Saif, M. W. Colorectal cancer in review: the role of the EGFR pathway. Expert Opin. Investig. Drugs19, 357–369 (2010). ArticleCASPubMed Google Scholar
Lièvre, A., Blons, H. & Laurent-Puig, P. Oncogenic mutations as predictive factors in colorectal cancer. Oncogene29, 3033–3043 (2010). ArticlePubMedCAS Google Scholar
Linardou, H. et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol.9, 962–972 (2008). ArticleCASPubMed Google Scholar
Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med.359, 1757–1765 (2008). ArticleCASPubMed Google Scholar
Shankaran, V., Obel, J. & Benson, A. B. 3rd. Predicting response to EGFR inhibitors in metastatic colorectal cancer: current practice and future directions. Oncologist15, 157–167 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mack, G. S. FDA holds court on post hoc data linking KRAS status to drug response. Nat. Biotechnol.27, 110–112 (2009). ArticleCASPubMed Google Scholar
Wolff, A. C. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J. Clin. Oncol.25, 118–145 (2007). ArticleCASPubMed Google Scholar
Gridelli, C. et al. Erlotinib in non-small cell lung cancer treatment: current status and future development. Oncologist12, 840–849 (2007). ArticleCASPubMed Google Scholar
Oxnard, G. R. & Miller, V. A. Use of erlotinib or gefitinib as initial therapy in advanced NSCLC. Oncology (Williston Park)24, 392–399 (2010). Google Scholar
Saijo, N. Targeted therapies: Tyrosine-kinase inhibitors–new standard for NSCLC therapy. Nat. Rev. Clin. Oncol.7, 618–619 (2010). ArticleCASPubMed Google Scholar
Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med.362, 2380–2388 (2010). ArticleCASPubMed Google Scholar
Mitsudomi, T. et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol.11, 121–128 (2010). ArticleCASPubMed Google Scholar
Lopez-Chavez, A. & Giaccone, G. Targeted therapies: Importance of patient selection for EGFR TKIs in lung cancer. Nat. Rev. Clin. Oncol.7, 360–362 (2010). ArticleCASPubMedPubMed Central Google Scholar
Massarelli, E. et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin. Cancer Res.13, 2890–2896 (2007). ArticleCASPubMed Google Scholar
Sasaki, T., Rodig, S. J., Chirieac, L. R. & Jänne, P. A. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur. J. Cancer46, 1773–1780 (2010). ArticleCASPubMedPubMed Central Google Scholar
De Witt Hamer, P. C. Small molecule kinase inhibitors in glioblastoma: a systematic review of clinical studies. Neuro. Oncol.12, 304–316 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mellinghoff, I. K., Cloughesy, T. F. & Mischel, P. S. PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors. Clin. Cancer Res.13, 378–381 (2007). ArticleCASPubMed Google Scholar
Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353, 2012–2024 (2005). ArticleCASPubMed Google Scholar
Diverio, D., Riccioni, R., Mandelli, F. & Lo Coco, F. The PML/RAR alpha fusion gene in the diagnosis and monitoring of acute promyelocytic leukemia. Haematologica80, 155–160 (1995). CASPubMed Google Scholar
Soprano, D. R., Qin, P. & Soprano, K. J. Retinoic acid receptors and cancers. Annu. Rev. Nutr.24, 201–221 (2004). ArticleCASPubMed Google Scholar
Lin, R. J. & Evans, R. M. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol. Cell5, 821–830 (2000). ArticleCASPubMed Google Scholar
Freemantle, S. J., Spinella, M. J. & Dmitrovsky, E. Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene22, 7305–7315 (2003). ArticleCASPubMed Google Scholar
Zhou, D. C. et al. Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood99, 1356–1363 (2002). ArticleCASPubMed Google Scholar
Tang, X. H. & Gudas, L. J. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol.6, 345–364 (2011). ArticleCASPubMed Google Scholar
Kuendgen, A. et al. The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer106, 112–119 (2006). ArticleCASPubMed Google Scholar
De los Santos, M., Zambrano, A., Sánchez-Pacheco, A. & Aranda, A. Histone deacetylase inhibitors regulate retinoic acid receptor beta expression in neuroblastoma cells by both transcriptional and posttranscriptional mechanisms. Mol. Endocrinol.21, 2416–2426 (2007). ArticleCASPubMed Google Scholar
Wooster, R. & Weber, B. L. Breast and ovarian cancer. N. Engl. J. Med.348, 2339–2347 (2003). ArticleCASPubMed Google Scholar
Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer5, 689–698 (2005). ArticleCASPubMed Google Scholar
Ashworth, A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol.26, 3785–3790 (2008). ArticleCASPubMed Google Scholar
Amé, J. C., Spenlehauer, C. & de Murcia, G. The PARP superfamily. Bioessays26, 882–893 (2004). ArticlePubMedCAS Google Scholar
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005). ArticleCASPubMed Google Scholar
Yap, T. A. et al. First in human phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of KU-0059436 (Ku), a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in cancer patients (p), including BRCA1/2 mutation carriers [abstract]. J. Clin. Oncol.25 (Suppl.), a3529 (2007). Google Scholar
Ratnam, K. & Low, J. A. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin. Cancer Res.13, 1383–1388 (2007). ArticleCASPubMed Google Scholar
Foulkes, W. D., Smith, I. E. & Rein-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med.363, 1938–1948 (2010). ArticleCASPubMed Google Scholar
O'Shaughnessy, J. et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med.364, 205–214 (2011). ArticleCASPubMed Google Scholar
Bath, C. Phase III results for PARP inhibitor iniparib quell optimism about new option for triple-negative metastatic breast cancer. The Asco Post[online], (2011). Google Scholar
Hutchinson, L. Targeted therapies: PARP inhibitor olaparib is safe and effective in patients with BRCA1 and BRCA2 mutations. Nat. Rev. Clin. Oncol.7, 549 (2010). ArticlePubMed Google Scholar
Shi, H., Kong, X., Ribas, A. & Lo, R.S. Combinatorial treatments that overcome PDGFRβ-driven resistance of melanoma cells to V600E B-RAF inhibition. Cancer Res.71, 5067–5074 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mullenders, J. & Bernards, R. Loss-of-function genetic screens as a tool to improve the diagnosis and treatment of cancer. Oncogene28, 4409–4420 (2009). ArticleCASPubMed Google Scholar
Cully, M., You, H., Levine, A. J. & Mak, T. W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer6, 184–192 (2006). ArticleCASPubMed Google Scholar
Iorns, E. et al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell13, 91–104 (2008). ArticleCASPubMed Google Scholar
Fotheringham, S. et al. Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell15, 57–66 (2009). ArticleCASPubMed Google Scholar
Khan, O. et al. HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. Proc. Natl Acad. Sci. USA107, 6532–6537 (2010). ArticleCASPubMedPubMed Central Google Scholar
Stimson, L., Wood, V., Khan, O., Fotheringham, S. & La Thangue, N. B. HDAC inhibitor-based therapies and haematological malignancy. Ann. Oncol.20, 1293–1302 (2009). ArticleCASPubMed Google Scholar
Whitehurst, A. W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature446, 815–819 (2007). ArticleCASPubMed Google Scholar
Shapiro, C. L. et al. Phase I trial of bortezomib (Velcade™) in combination with paclitaxel in advanced solid tumor patients (pts) [abstract]. J. Clin. Oncol.23 (Suppl.), a3104 (2005). Article Google Scholar
Young, R. C. Cancer clinical trials–a chronic but curable crisis. N. Engl. J. Med.363, 306–309 (2010). ArticleCASPubMed Google Scholar