Regulated necrosis: disease relevance and therapeutic opportunities (original) (raw)
Laster, S. M., Wood, J. G. & Gooding, L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol.141, 2629–2634 (1988). CASPubMed Google Scholar
Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol.15, 135–147 (2014). ArticleCASPubMed Google Scholar
Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell Biol.198, 773–783 (2012). ArticleCASPubMedPubMed Central Google Scholar
Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol.11, 700–714 (2010). ArticleCASPubMed Google Scholar
Sun, L. & Wang, X. A new kind of cell suicide: mechanisms and functions of programmed necrosis. Trends Biochem. Sci.39, 587–593 (2014). ArticleCASPubMed Google Scholar
Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol.1, 112–119 (2005). ArticleCASPubMed Google Scholar
Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol.4, 313–321 (2008). References 10 and 11 describe the first series of small molecules able to prevent necrotic TNF-induced cell death via RIPK1 inhibition. ArticleCASPubMedPubMed Central Google Scholar
Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature517, 311–320 (2015). ArticleCASPubMed Google Scholar
Kim, S. K. et al. Upregulated RIP3 expression potentiates MLKL phosphorylation-mediated programmed necrosis in toxic epidermal necrolysis. J. Invest. Dermatol.135, 2021–2030 (2015). ArticleCASPubMed Google Scholar
Linkermann, A., Stockwell, B. R., Krautwald, S. & Anders, H. J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat. Rev. Immunol.14, 759–767 (2014). ArticleCASPubMed Google Scholar
He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell137, 1100–1111 (2009). ArticleCASPubMed Google Scholar
Linkermann, A. et al. Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-α-induced shock. Mol. Med.18, 577–586 (2012). ArticleCASPubMedPubMed Central Google Scholar
Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science343, 1357–1360 (2014). ArticleCASPubMed Google Scholar
Jouan-Lanhouet, S. et al. Necroptosis, in vivo detection in experimental disease models. Semin. Cell Dev. Biol.35, 2–13 (2014). ArticleCASPubMed Google Scholar
Dondelinger, Y. et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell60, 63–76 (2015). ArticleCASPubMed Google Scholar
Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell114, 181–190 (2003). ArticleCASPubMed Google Scholar
Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell133, 693–703 (2008). ArticleCASPubMed Google Scholar
Dondelinger, Y. et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ.20, 1381–1392 (2013). ArticleCASPubMedPubMed Central Google Scholar
Legarda-Addison, D., Hase, H., O'Donnell, M. A. & Ting, A. T. NEMO/IKKγ regulates an early NF-κB-independent cell-death checkpoint during TNF signaling. Cell Death Differ.16, 1279–1288 (2009). ArticleCASPubMed Google Scholar
Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol.16, 55–65 (2014). ArticleCASPubMed Google Scholar
Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res.24, 105–121 (2014). ArticleCASPubMed Google Scholar
Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep.7, 971–981 (2014). ArticleCASPubMed Google Scholar
Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell54, 133–146 (2014). ArticleCASPubMed Google Scholar
Tenev, T. et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell43, 432–448 (2011). ArticleCASPubMed Google Scholar
Feoktistova, M. et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell43, 449–463 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mandal, P. et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell56, 481–495 (2014). This paper demonstrates how small-molecule drugs targeting RIPK3 kinase activity indeed block necroptosis induction, but in some cases induce RIPK3-platform-mediated apoptosis involving caspase 8 and RIPK1 kinase activity. ArticleCASPubMedPubMed Central Google Scholar
Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc. Natl Acad. Sci. USA111, 15072–15077 (2014). ArticleCASPubMedPubMed Central Google Scholar
Teng, X. et al. Structure–activity relationship study of novel necroptosis inhibitors. Bioorg. Med. Chem. Lett.15, 5039–5044 (2005). ArticleCASPubMed Google Scholar
Vandenabeele, P., Grootjans, S., Callewaert, N. & Takahashi, N. Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death Differ.20, 185–187 (2013). ArticleCASPubMed Google Scholar
Takahashi, N. et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis.3, e437 (2012). ArticleCASPubMedPubMed Central Google Scholar
Degterev, A., Maki, J. L. & Yuan, J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ.20, 366 (2013). ArticleCASPubMed Google Scholar
Prendergast, G. C., Chang, M. Y., Mandik-Nayak, L., Metz, R. & Muller, A. J. Indoleamine 2,3-dioxygenase as a modifier of pathogenic inflammation in cancer and other inflammation-associated diseases. Curr. Med. Chem.18, 2257–2262 (2011). ArticleCASPubMedPubMed Central Google Scholar
Xie, T. et al. Structural basis of RIP1 inhibition by necrostatins. Structure21, 493–499 (2013). ArticleCASPubMed Google Scholar
Harris, P. A. et al. Discovery of small molecule RIP1 kinase inhibitors for the treatment of pathologies associated with necroptosis. ACS Med. Chem. Lett.4, 1238–1243 (2013). ArticleCASPubMedPubMed Central Google Scholar
Najjar, M. et al. Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Rep.10, 1850–1860 (2015). ArticleCASPubMedPubMed Central Google Scholar
Newton, K., Sun, X. & Dixit, V. M. Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol.24, 1464–1469 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wang, Q. et al. Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circ. Res.116, 600–611 (2015). ArticleCASPubMedPubMed Central Google Scholar
Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe11, 290–297 (2012). ArticleCASPubMedPubMed Central Google Scholar
Vitner, E. B. et al. RIPK3 as a potential therapeutic target for Gaucher's disease. Nat. Med.20, 204–208 (2014). ArticleCASPubMed Google Scholar
Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell148, 213–227 (2012). In this paper, a pharmacoproteomics approach based on a necroptosis-inhibiting drug (NSA) led to the successful identification of the execution protein MLKL, which is regulated by RIPK3-dependent phosphorylation. ArticleCASPubMed Google Scholar
Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell150, 339–350 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cauwels, A., Janssen, B., Waeytens, A., Cuvelier, C. & Brouckaert, P. Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat. Immunol.4, 387–393 (2003). ArticleCASPubMed Google Scholar
Duprez, L. et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity35, 908–918 (2011). ArticleCASPubMed Google Scholar
Polykratis, A. et al. Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol.193, 1539–1543 (2014). ArticleCASPubMed Google Scholar
Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol.15, 234–245 (2008). ArticleCASPubMedPubMed Central Google Scholar
Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell149, 1060–1072 (2012). In this paper, the term ferroptosis is coined, and it is shown that a functional system Xc−is required to maintain glutathione levels to inhibit this form of cell death in a subset of cancer cell lines. ArticleCASPubMedPubMed Central Google Scholar
Sato, H., Tamba, M., Ishii, T. & Bannai, S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J. Biol. Chem.274, 11455–11458 (1999). ArticleCASPubMed Google Scholar
Conrad, M. & Sato, H. The oxidative stress-inducible cystine/glutamate antiporter, system Xc−: cystine supplier and beyond. Amino Acids42, 231–246 (2012). ArticleCASPubMed Google Scholar
Ursini, F., Maiorino, M., Valente, M., Ferri, L. & Gregolin, C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta710, 197–211 (1982). ArticleCASPubMed Google Scholar
Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell156, 317–331 (2014). This paper shows that GPX4 is the limiting glutathione-utilizing enzyme required for the prevention of ferroptosis in cancer cells. ArticleCASPubMedPubMed Central Google Scholar
Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol.16, 1180–1191 (2014). This paper shows that the ferroptosis inhibitor liproxstatin-1 protects mice from acute renal failure induced by inducibleGpx4ablation as well as from hepatic IRI. ArticleCASPubMed Google Scholar
Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA111, 16836–16841 (2014). This paper indicates thatin vivoinhibition of ferroptosis leads to a protective effect in a pathophysiological setting, such as IRI in the kidney. ArticleCASPubMedPubMed Central Google Scholar
Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell. Metab.8, 237–248 (2008). This paper describes the first conditional-knockout model of the ferroptosis regulator GPX4 in cells and mice, which were further used for the development of liproxstatin-1 and for assessing the importance of ferroptosis in different tissues. ArticleCASPubMed Google Scholar
Yoo, S. E. et al. Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radic. Biol. Med.52, 1820–1827 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen, L., Na, R., Gu, M., Richardson, A. & Ran, Q. Lipid peroxidation up-regulates BACE1 expression in vivo: a possible early event of amyloidogenesis in Alzheimer's disease. J. Neurochem.107, 197–207 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yoo, M. H. et al. Delineating the role of glutathione peroxidase 4 in protecting cells against lipid hydroperoxide damage and in Alzheimer's disease. Antioxid. Redox Signal12, 819–827 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ufer, C. et al. Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development. Genes Dev.22, 1838–1850 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hauser, D. N., Dukes, A. A., Mortimer, A. D. & Hastings, T. G. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radic. Biol. Med.65, 419–427 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bellinger, F. P. et al. Changes in selenoprotein P in substantia nigra and putamen in Parkinson's disease. J. Parkinsons Dis.2, 115–126 (2012). CASPubMedPubMed Central Google Scholar
Bellinger, F. P. et al. Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of Parkinson's brain. Mol. Neurodegener.6, 8 (2011). ArticleCASPubMedPubMed Central Google Scholar
Skouta, R. et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc.136, 4551–4556 (2014). Ferrostatins with improved properties are reported in this paper to be effective in several cellular disease models. These ferrostatins block lipid peroxidation, but not by inhibiting mitochondrial ROS production or preventing lysosomal membrane permeabilization. ArticleCASPubMedPubMed Central Google Scholar
Wirth, E. K. et al. Cerebellar hypoplasia in mice lacking selenoprotein biosynthesis in neurons. Biol. Trace Elem. Res.158, 203–210 (2014). ArticleCASPubMedPubMed Central Google Scholar
Roth, T. L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature505, 223–228 (2014). ArticleCASPubMed Google Scholar
Korade, Z. et al. Antioxidant supplementation ameliorates molecular deficits in Smith–Lemli–Opitz syndrome. Biol. Psychiatry75, 215–222 (2014). ArticleCASPubMed Google Scholar
Ueta, T. et al. Glutathione peroxidase 4 is required for maturation of photoreceptor cells. J. Biol. Chem.287, 7675–7682 (2012). ArticleCASPubMed Google Scholar
Sengupta, A. et al. Targeted disruption of glutathione peroxidase 4 in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2. J. Invest. Dermatol.133, 1731–1741 (2013). ArticleCASPubMedPubMed Central Google Scholar
Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med.212, 555–568 (2015). ArticleCASPubMedPubMed Central Google Scholar
Wortmann, M. et al. Combined deficiency in glutathione peroxidase 4 and vitamin E causes multiorgan thrombus formation and early death in mice. Circ. Res.113, 408–417 (2013). ArticleCASPubMed Google Scholar
Bannai, S. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J. Biol. Chem.261, 2256–2263 (1986). CASPubMed Google Scholar
Mandal, P. K. et al. System Xc− and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J. Biol. Chem.285, 22244–22253 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature520, 57–62 (2015). This paper implicates ferroptosis as a non-canonical tumour suppressive function of p53 via p53-mediated transcriptional inhibition of system Xc−. ArticleCASPubMedPubMed Central Google Scholar
Hayano, M., Yang, W. S., Corn, C. K., Pagano, N. C. & Stockwell, B. R. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ.http://dx.doi.org/10.1038/cdd.2015.93 (2015).
Yant, L. J. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med.34, 496–502 (2003). ArticleCASPubMed Google Scholar
Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell59, 298–308 (2015). This paper suggests that inhibiting glutaminolysis might be a putative anti-ferroptotic pharmacological approach and that cells that preferably use glutaminolysis for energy production are more sensitive to ferroptosis. ArticleCASPubMedPubMed Central Google Scholar
Tretter, L. & Adam-Vizi, V. Generation of reactive oxygen species in the reaction catalyzed by α-ketoglutarate dehydrogenase. J. Neurosci.24, 7771–7778 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bae, Y. S. et al. Platelet-derived growth factor-induced H2O2 production requires the activation of phosphatidylinositol 3-kinase. J. Biol. Chem.275, 10527–10531 (2000). ArticleCASPubMed Google Scholar
Han, C. Y. et al. NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J. Biol. Chem.287, 10379–10393 (2012). ArticleCASPubMedPubMed Central Google Scholar
Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol.10, 1604–1609 (2015). ArticleCASPubMedPubMed Central Google Scholar
Dixon, S. J. et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife3, e02523 (2014). Here, inhibition of system Xc−by erastin or sorafenib is shown to be associated with endoplasmic reticulum stress and glutathione- specific γ-glutamylcyclotransferase 1 upregulation involved in glutathione degradation. ArticlePubMedPubMed Central Google Scholar
Louandre, C. et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer133, 1732–1742 (2013). ArticleCASPubMed Google Scholar
Chen, R. S. et al. Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/β-catenin pathway. Oncogene28, 599–609 (2009). ArticleCASPubMed Google Scholar
Nagano, O., Okazaki, S. & Saya, H. Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene32, 5191–5198 (2013). ArticleCASPubMed Google Scholar
Timmerman, L. A. et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell24, 450–465 (2013). ArticleCASPubMedPubMed Central Google Scholar
Keldsen, N., Havsteen, H., Vergote, I., Bertelsen, K. & Jakobsen, A. Altretamine (hexamethylmelamine) in the treatment of platinum-resistant ovarian cancer: a phase II study. Gynecol. Oncol.88, 118–122 (2003). ArticleCASPubMed Google Scholar
Virag, L., Robaszkiewicz, A., Rodriguez-Vargas, J. M. & Oliver, F. J. Poly(ADP-ribose) signaling in cell death. Mol. Aspects Med.34, 1153–1167 (2013). ArticleCASPubMed Google Scholar
Curtin, N. J. & Szabo, C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol. Aspects Med.34, 1217–1256 (2013). ArticleCASPubMed Google Scholar
Mashimo, M., Kato, J. & Moss, J. ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc. Natl Acad. Sci. USA110, 18964–18969 (2013). ArticleCASPubMedPubMed Central Google Scholar
Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. NY Acad. Sci.1147, 233–241 (2008). ArticleCASPubMed Google Scholar
Wang, Y. et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci. Signal.4, ra20 (2011). PubMedPubMed Central Google Scholar
Andrabi, S. A. et al. Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat. Med.17, 692–699 (2011). In this paper, the first endogenous inhibitor of parthanatos is described, indicating that interfering with PAR polymer signalling is a putative treatment for neurodegenerative disease. ArticleCASPubMedPubMed Central Google Scholar
Graziani, G. & Szabo, C. Clinical perspectives of PARP inhibitors. Pharmacol. Res.52, 109–118 (2005). ArticleCASPubMed Google Scholar
del Moral, R. M. et al. PARP inhibition attenuates histopathological lesion in ischemia/reperfusion renal mouse model after cold prolonged ischemia. ScientificWorldJournal2013, 486574 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sahaboglu, A. et al. PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function. PLoS ONE5, e15495 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jagtap, P. et al. Novel phenanthridinone inhibitors of poly (adenosine 5′-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit. Care Med.30, 1071–1082 (2002). ArticleCASPubMed Google Scholar
Jagtap, P. G. et al. The discovery and synthesis of novel adenosine substituted 2,3-dihydro-1_H_-isoindol-1-ones: potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg. Med. Chem. Lett.14, 81–85 (2004). ArticleCASPubMed Google Scholar
Jagtap, P. G. et al. Discovery of potent poly(ADP-ribose) polymerase-1 inhibitors from the modification of indeno[1,2-c]isoquinolinone. J. Med. Chem.48, 5100–5103 (2005). ArticleCASPubMed Google Scholar
Morrow, D. A. et al. A randomized, placebo-controlled trial to evaluate the tolerability, safety, pharmacokinetics, and pharmacodynamics of a potent inhibitor of poly(ADP-ribose) polymerase (INO-1001) in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of the TIMI 37 trial. J. Thromb. Thrombolysis27, 359–364 (2009). ArticleCASPubMed Google Scholar
US National Library of Medicine. ClinicalTrials.gov[online], (2013).
Andrabi, S. A. et al. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc. Natl Acad. Sci. USA111, 10209–10214 (2014). Although parthanatos still lacks a clear core cell death pathway, this paper indicates that overactivation of PARP1 is caused by PAR-dependent inhibition of glycolysis through the inhibition of HK, explaining the bioenergetic collapse that results in necrotic cell death. ArticleCASPubMedPubMed Central Google Scholar
Devalaraja-Narashimha, K., Diener, A. M. & Padanilam, B. J. Cyclophilin D gene ablation protects mice from ischemic renal injury. Am. J. Physiol. Renal Physiol.297, F749–F759 (2009). ArticleCASPubMed Google Scholar
Millay, D. P. et al. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat. Med.14, 442–447 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jobe, S. M. et al. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood111, 1257–1265 (2008). ArticleCASPubMedPubMed Central Google Scholar
Fujimoto, K., Chen, Y., Polonsky, K. S. & Dorn, G. W. 2nd. Targeting cyclophilin D and the mitochondrial permeability transition enhances β-cell survival and prevents diabetes in Pdx1 deficiency. Proc. Natl Acad. Sci. USA107, 10214–10219 (2010). ArticlePubMedPubMed Central Google Scholar
Forte, M. et al. Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc. Natl Acad. Sci. USA104, 7558–7563 (2007). ArticleCASPubMedPubMed Central Google Scholar
Javadov, S. & Kuznetsov, A. Mitochondrial permeability transition and cell death: the role of cyclophilin D. Front. Physiol.4, 76 (2013). CASPubMedPubMed Central Google Scholar
Giorgio, V. et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl Acad. Sci. USA110, 5887–5892 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bonora, M., Bravo- San Pedro, J. M., Kroemer, G., Galluzzi, L. & Pinton, P. Novel insights into the mitochondrial permeability transition. Cell Cycle13, 2666–2670 (2014). ArticleCASPubMedPubMed Central Google Scholar
Karch, J. & Molkentin, J. D. Is p53 the long-sought molecular trigger for cyclophilin D-regulated mitochondrial permeability transition pore formation and necrosis? Circ. Res.111, 1258–1260 (2012). ArticleCASPubMed Google Scholar
Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature434, 652–658 (2005). ArticleCASPubMed Google Scholar
Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature434, 658–662 (2005). ArticleCASPubMed Google Scholar
Schinzel, A. C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl Acad. Sci. USA102, 12005–12010 (2005). References 126–128 characterize the requirement of CypD for the formation of the MPTP, and its inhibition as a pharmacologically amenable approach. ArticleCASPubMedPubMed Central Google Scholar
Zhang, L. H., Youn, H. D. & Liu, J. O. Inhibition of cell cycle progression by the novel cyclophilin ligand sanglifehrin A is mediated through the NFκB-dependent activation of p53. J. Biol. Chem.276, 43534–43540 (2001). ArticleCASPubMed Google Scholar
Clarke, S. J., McStay, G. P. & Halestrap, A. P. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J. Biol. Chem.277, 34793–34799 (2002). ArticleCASPubMed Google Scholar
Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proc. Natl Acad. Sci. USA110, 12024–12029 (2013). ArticlePubMedPubMed Central Google Scholar
Nighoghossian, N. et al. Cyclosporine in acute ischemic stroke. Neurology84, 2216–2223 (2015). ArticleCASPubMed Google Scholar
Keogh, A. Calcineurin inhibitors in heart transplantation. J. Heart Lung Transplant23, S202–S206 (2004). ArticlePubMed Google Scholar
Zhao, H. et al. Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats. Kidney Int.87, 738–748 (2015). ArticleCASPubMed Google Scholar
Takahashi, N. et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature513, 95–99 (2014). ArticleCASPubMed Google Scholar
Ch'en, I. L., Tsau, J. S., Molkentin, J. D., Komatsu, M. & Hedrick, S. M. Mechanisms of necroptosis in T cells. J. Exp. Med.208, 633–641 (2011). ArticleCASPubMedPubMed Central Google Scholar
Moriwaki, K. & Chan, F. K. Necrosis-dependent and independent signaling of the RIP kinases in inflammation. Cytokine Growth Factor Rev.25, 167–174 (2014). ArticleCASPubMed Google Scholar
Munoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity38, 1142–1153 (2013). ArticleCASPubMedPubMed Central Google Scholar
Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol.14, 454–460 (2013). ArticleCASPubMed Google Scholar
Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature469, 221–225 (2011). ArticleCASPubMed Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol.9, 847–856 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity38, 27–40 (2013). This study puts forward for the first time the possible and complex interaction between the necrosome and inflammasome machinery. ArticleCASPubMed Google Scholar
Moriwaki, K., Bertin, J., Gough, P. J. & Chan, F. K. A. RIPK3-caspase 8 complex mediates atypical pro-IL-1β processing. J. Immunol.194, 1938–1944 (2015). ArticleCASPubMed Google Scholar
Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun.6, 6282 (2015). ArticleCASPubMed Google Scholar
Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling. 526, 666–671 Nature (2015). ArticleCASPubMed Google Scholar
Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. 526, 660–665 Nature (2015). ArticleCASPubMed Google Scholar
Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med.21, 248–255 (2015). ArticleCASPubMedPubMed Central Google Scholar
Tan, S., Schubert, D. & Maher, P. Oxytosis: a novel form of programmed cell death. Curr. Top. Med. Chem.1, 497–506 (2001). ArticleCASPubMed Google Scholar
Li, Y., Maher, P. & Schubert, D. A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron19, 453–463 (1997). ArticleCASPubMed Google Scholar
Pallast, S. et al. Increased nuclear apoptosis-inducing factor after transient focal ischemia: a 12/15-lipoxygenase-dependent organelle damage pathway. J. Cereb. Blood Flow Metab.30, 1157–1167 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pallast, S., Arai, K., Wang, X., Lo, E. H. & van Leyen, K. 12/15-lipoxygenase targets neuronal mitochondria under oxidative stress. J. Neurochem.111, 882–889 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yigitkanli, K. et al. Inhibition of 12/15-lipoxygenase as therapeutic strategy to treat stroke. Ann. Neurol.73, 129–135 (2013). ArticleCASPubMed Google Scholar
van Leyen, K. et al. Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke37, 3014–3018 (2006). This study demonstrates that glutathione depletion leads to lipid peroxidation and cell death in neuronal cells — a phenomenon later termed as oxytosis, which is related to ferroptosis. ArticleCASPubMed Google Scholar
Jin, G. et al. Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke39, 2538–2543 (2008). ArticleCASPubMedPubMed Central Google Scholar
Oxler, E. M., Dolga, A. & Culmsee, C. AIF depletion provides neuroprotection through a preconditioning effect. Apoptosis17, 1027–1038 (2012). ArticleCASPubMed Google Scholar
Mahoney, D. J. et al. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc. Natl Acad. Sci. USA105, 11778–11783 (2008). ArticlePubMedPubMed Central Google Scholar
Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell36, 831–844 (2009). ArticleCASPubMed Google Scholar
Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell131, 669–681 (2007). ArticleCASPubMed Google Scholar
Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell131, 682–693 (2007). ArticleCASPubMed Google Scholar
Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell12, 445–456 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell30, 689–700 (2008). ArticleCASPubMed Google Scholar
Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev.13, 2514–2526 (1999). ArticleCASPubMedPubMed Central Google Scholar
Feng, S. et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal19, 2056–2067 (2007). ArticleCASPubMed Google Scholar
Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell137, 1112–1123 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science325, 332–336 (2009). ArticleCASPubMed Google Scholar
Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA109, 5322–5327 (2012). ArticlePubMedPubMed Central Google Scholar
Kobayashi, S. et al. Cystathionine is a novel substrate of cystine/glutamate transporter: implications for immune function. J. Biol. Chem.290, 8778–8788 (2015). ArticleCASPubMedPubMed Central Google Scholar
Bannai, S. & Kitamura, E. Transport interaction of l-cystine and l-glutamate in human diploid fibroblasts in culture. J. Biol. Chem.255, 2372–2376 (1980). CASPubMed Google Scholar
Gout, P. W., Buckley, A. R., Simms, C. R. & Bruchovsky, N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the Xc− cystine transporter: a new action for an old drug. Leukemia15, 1633–1640 (2001). ArticleCASPubMed Google Scholar
Patel, S. A., Warren, B. A., Rhoderick, J. F. & Bridges, R. J. Differentiation of substrate and non-substrate inhibitors of transport system Xc−: an obligate exchanger of l -glutamate and l-cystine. Neuropharmacology46, 273–284 (2004). ArticleCASPubMed Google Scholar
Fatokun, A. A., Dawson, V. L. & Dawson, T. M. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br. J. Pharmacol.171, 2000–2016 (2014). ArticleCASPubMedPubMed Central Google Scholar
Shall, S. Proceedings: experimental manipulation of the specific activity of poly(ADP-ribose) polymerase. J. Biochem77, 2p (1975). ArticleCASPubMed Google Scholar
Fatokun, A. A., Liu, J. O., Dawson, V. L. & Dawson, T. M. Identification through high-throughput screening of 4′-methoxyflavone and 3′,4′-dimethoxyflavone as novel neuroprotective inhibitors of parthanatos. Br. J. Pharmacol.169, 1263–1278 (2013). ArticleCASPubMedPubMed Central Google Scholar
Greco, R. et al. Neuroprotection by the PARP inhibitor PJ34 modulates cerebral and circulating RAGE levels in rats exposed to focal brain ischemia. Eur. J. Pharmacol.744, 91–97 (2014). ArticleCASPubMed Google Scholar
Wang, J. et al. Inhibition of poly (ADP-ribose) polymerase and inducible nitric oxide synthase protects against ischemic myocardial damage by reduction of apoptosis. Mol. Med. Rep.11, 1768–1776 (2015). ArticleCASPubMed Google Scholar
Ha, H. C. & Snyder, S. H. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl Acad. Sci. USA96, 13978–13982 (1999). ArticleCASPubMedPubMed Central Google Scholar
Meier, H. L., Ballough, G. P., Forster, J. S. & Filbert, M. G. Benzamide, a poly(ADP-ribose) polymerase inhibitor, is neuroprotective against soman-induced seizure-related brain damage. Ann. NY Acad. Sci.890, 330–335 (1999). ArticleCASPubMed Google Scholar
Szabo, G. et al. INO-1001 a novel poly(ADP-ribose) polymerase (PARP) inhibitor improves cardiac and pulmonary function after crystalloid cardioplegia and extracorporal circulation. Shock21, 426–432 (2004). ArticleCASPubMed Google Scholar
d'Avila, J. C. et al. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor. J. Neuroinflamm.9, 31 (2012). CAS Google Scholar
US National Library of Medicine. ClinicalTrials.gov[online], (2006).
US National Library of Medicine. ClinicalTrials.gov[online], (2005).
Griffith, O. W. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J. Biol. Chem.257, 13704–13712 (1982). CASPubMed Google Scholar
Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell27, 211–222 (2015). ArticleCASPubMed Google Scholar
Kim, S. Y. et al. Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury. Cell Death Dis.5, e1105 (2014). ArticleCASPubMedPubMed Central Google Scholar
Teixeira, G. et al. Synergistic protective effect of cyclosporin A and rotenone against hypoxia–reoxygenation in cardiomyocytes. J. Mol. Cell Cardiol.56, 55–62 (2013). ArticleCASPubMed Google Scholar
Hausenloy, D., Wynne, A., Duchen, M. & Yellon, D. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation109, 1714–1717 (2004). ArticleCASPubMed Google Scholar
Strom, E. et al. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat. Chem. Biol.2, 474–479 (2006). ArticleCASPubMed Google Scholar