Burnstock, G., Campbell, G., Satchell, D. & Smythe, A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br. J. Pharmacol.40, 668–688 (1970). CASPubMedPubMed Central Google Scholar
Burnstock, G. Do some nerve cells release more than one transmitter? Neuroscience1, 239–248 (1976). CASPubMed Google Scholar
Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev.87, 659–797 (2007). A recent, comprehensive review of purinergic signalling in the nervous system. CASPubMed Google Scholar
Burnstock, G. A basis for distinguishing two types of purinergic receptor, in Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (eds Straub, R. W. & Bolis, L.) 107–118 (Raven Press, New York, 1978). Google Scholar
Burnstock, G. & Kennedy, C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol.16, 433–440 (1985). CASPubMed Google Scholar
Ralevic, V. & Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev.50, 413–492 (1998). CASPubMed Google Scholar
Abbracchio, M. P. et al. International Union of Pharmacology. Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev.58, 281–341 (2006). CASPubMed Google Scholar
Burnstock, G. Purine and pyrimidine receptors. Cellular and Molecular Life Sciences64, 1471–1483 (2007). A recent update of subtypes of receptors for purines and pyrimidines. CASPubMed Google Scholar
Köles, L., Fürst, S. & Illes, P. Purine ionotropic (P2X) receptors. Curr. Pharm. Des.13, 2368–2384 (2007). PubMed Google Scholar
North, R. A. & Verkhratsky, A. Purinergic transmission in the central nervous system. Pflugers Arch.452, 479–485 (2006). CASPubMed Google Scholar
Bonan, C. D., Schetinger, M. R., Battastini, A. M. & Sarkis, J. J. Ectonucleotidases and synaptic plasticity: implications in physiological and pathological conditions. Drug Dev. Res.52, 57–65 (2001). CAS Google Scholar
Burnstock, G. & Knight, G. E. Cellular distribution and functions of P2 receptor subtypes in different systems. Int. Rev. Cytol.240, 31–304 (2004). CASPubMed Google Scholar
Fields, D. & Burnstock, G. Purinergic signalling in neuron–glial interactions. Nature Rev. Neurosci.7, 423–436 (2006). A review of the growing recognition of the involvement of purinergic signalling in neuron–glial interactions in the CNS. CAS Google Scholar
Inoue, K., Koizumi, S. & Tsuda, M. The role of nucleotides in the neuron-glia communication responsible for the brain functions. J. Neurochem.102, 1447–1458 (2007). CASPubMed Google Scholar
Abbracchio, M. P. & Burnstock, G. Purinergic signalling: pathophysiological roles. Jpn. J. Pharmacol.78, 113–145 (1998). CASPubMed Google Scholar
Mishra, S. K. et al. Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development133, 675–684 (2006). CASPubMed Google Scholar
Neary, J. T. et al. Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci.19, 13–18 (1996). CASPubMed Google Scholar
Pankratov, Y. V., Lalo, U. V. & Krishtal, O. A. Role for P2X receptors in long-term potentiation. J. Neurosci.22, 8363–8369 (2002). CASPubMedPubMed Central Google Scholar
Pedrazza, E. L. et al. Habituation to an open field alters ecto-nucleotidase activities in rat hippocampal synaptosomes. Neurosci. Lett.413, 21–24 (2007). CASPubMed Google Scholar
Basheer, R., Strecker, R. E., Thakkar, M. M. & McCarley, R. W. Adenosine and sleep-wake regulation. Prog. Neurobiol.73, 379–396 (2004). CASPubMed Google Scholar
Barraco, R., Martens, K. A., Parizon, M. & Normile, H. J. Adenosine A2a receptors in the nucleus accumbens mediate locomotor depression. Brain Res. Bull.31, 397–404 (1993). CASPubMed Google Scholar
Florenzano, F. et al. P2X2R purinergic receptor subunit mRNA and protein are expressed by all hypothalamic hypocretin/orexin neurons. J. Comp. Neurol.498, 58–67 (2006). CASPubMed Google Scholar
Brockhaus, J., Dressel, D., Herold, S. & Deitmer, J. W. Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Eur. J. Neurosci.19, 2221–2230 (2004). PubMed Google Scholar
Kittner, H., Krügel, U., Hoffmann, E. & Illes, P. Modulation of feeding behaviour by blocking purinergic receptors in the rat nucleus accumbens: a combined microdialysis, electroencephalographic and behavioural study. Eur. J. Neurosci.19, 396–404 (2004). CASPubMed Google Scholar
Kittner, H. et al. Enhanced food intake after stimulation of hypothalamic P2Y1 receptors in rats: modulation of feeding behaviour by extracellular nucleotides. Eur. J. Neurosci.24, 2049–2056 (2006). PubMed Google Scholar
Franke, H., Krügel, U. & Illes, P. P2 receptors and neuronal injury. Pflugers Arch.452, 622–644 (2006). A valuable review of the roles of P2 receptors in neuronal injury and regeneration. CASPubMed Google Scholar
Neary, J. T., Kang, Y., Tran, M. & Feld, J. Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors. J. Neurotrauma22, 491–500 (2005). PubMed Google Scholar
Neary, J. T. et al. P2 receptor signalling, proliferation of astrocytes, and expression of molecules involved in cell–cell interactions. Novartis Found. Symp.276, 131–143 (2006). A good review of the trophic roles of purines and pyrimidines in the CNS. CASPubMed Google Scholar
Tran, M. D. & Neary, J. T. Purinergic signaling induces thrombospondin-1 expression in astrocytes. Proc. Natl Acad. Sci. USA.103, 9321–9326 (2006). CASPubMedPubMed Central Google Scholar
Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci.8, 752–758 (2005). An important experimental study of the neuroprotective roles of ATP. CASPubMed Google Scholar
Färber, K. & Kettenmann, H. Purinergic signaling and microglia. Pflugers Arch.452, 615–621 (2006). An important summary of the roles of purinoceptors expressed in microglia. PubMed Google Scholar
Neary, J. T., Kang, Y., Willoughby, K. A. & Ellis, E. F. Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J. Neurosci.23, 2348–2356 (2003). CASPubMedPubMed Central Google Scholar
Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neurosci.9, 1512–1519 (2006). CASPubMed Google Scholar
Ohsawa, K. et al. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia55, 604–616 (2007). PubMed Google Scholar
Xiang, Z. et al. Microglial morphology and its transformation after challenge by extracellular ATP in vitro. J. Neurosci. Res.83, 91–101 (2006). CASPubMed Google Scholar
Koizumi, S. et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature446, 1091–1095 (2007). CASPubMedPubMed Central Google Scholar
Zhang, Z. et al. Lesional accumulation of P2X4 receptor+ monocytes following experimental traumatic brain injury. Exp. Neurol.197, 252–257 (2006). CASPubMed Google Scholar
Bianco, F. et al. A role for P2X7 in microglial proliferation. J. Neurochem.99, 745–758 (2006). CASPubMed Google Scholar
Franke, H. & Illes, P. Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol. Ther.109, 297–324 (2006). CASPubMed Google Scholar
Washburn, K. B. & Neary, J. T. P2 purinergic receptors signal to STAT3 in astrocytes: Difference in STAT3 responses to P2Y and P2X receptor activation. Neuroscience142, 411–423 (2006). CASPubMed Google Scholar
Brambilla, R. et al. Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Br. J. Pharmacol.126, 563–567 (1999). CASPubMedPubMed Central Google Scholar
Florenzano, F. et al. Cerebellar lesion up-regulates P2X1 and P2X2 purinergic receptors in precerebellar nuclei. Neuroscience115, 425–434 (2002). CASPubMed Google Scholar
Arthur, D. B., Georgi, S., Akassoglou, K. & Insel, P. A. Inhibition of apoptosis by P2Y2 receptor activation: novel pathways for neuronal survival. J. Neurosci.26, 3798–3804 (2006). CASPubMedPubMed Central Google Scholar
Chorna, N. E. et al. P2Y2 receptors activate neuroprotective mechanisms in astrocytic cells. J. Neurochem.91, 119–132 (2004). CASPubMed Google Scholar
Inoue, K. ATP receptors for the protection of hippocampal functions. Jpn. J. Pharmacol.78, 405–410 (1998). CASPubMed Google Scholar
Franke, H. et al. Changes in purinergic signaling after cerebral injury — involvement of glutamatergic mechanisms? Int. J. Dev. Neurosci.24, 123–132 (2006). CASPubMed Google Scholar
Matute, C. et al. P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J. Neurosci.27, 9525–9533 (2007). An experimental study of the role of P2X7receptors in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. CASPubMedPubMed Central Google Scholar
Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nature Med.10, 821–827 (2004). CASPubMed Google Scholar
Sperlágh, B. et al. Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus. Neuroscience149, 99–111 (2007). A paper describing the purinergic modulation of glutamate release in ischaemic hippocampus. PubMed Google Scholar
Aihara, H. et al. Adenosine triphosphate accelerates recovery from hypoxic/hypoglycemic perturbation of guinea pig hippocampal neurotransmission via a P2 receptor. Brain Res.952, 31–37 (2002). CASPubMed Google Scholar
Lämmer, A. et al. Neuroprotective effects of the P2 receptor antagonist PPADS on focal cerebral ischaemia-induced injury in rats. Eur. J. Neurosci.23, 2824–2828 (2006). PubMed Google Scholar
Braun, N. et al. Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J. Neurosci.18, 4891–4900 (1998). CASPubMedPubMed Central Google Scholar
Cavaliere, F. et al. Up-regulation of P2X2, P2X4 receptor and ischemic cell death: prevention by P2 antagonists. Neuroscience120, 85–98 (2003). CASPubMed Google Scholar
Frenguelli, B. G., Wigmore, G., Llaudet, E. & Dale, N. Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J. Neurochem.101, 1400–1413 (2007). CASPubMedPubMed Central Google Scholar
Franke, H. et al. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J. Neuropathol. Exp. Neurol.63, 686–699 (2004). CASPubMed Google Scholar
Melani, A. et al. P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J. Cereb. Blood Flow Metab.26, 974–982 (2006). CASPubMed Google Scholar
Wirkner, K. et al. Supersensitivity of P2X7 receptors in cerebrocortical cell cultures after in vitro ischemia. J. Neurochem.95, 1421–1437 (2005). CASPubMed Google Scholar
Le Feuvre, R. A., Brough, D., Touzani, O. & Rothwell, N. J. Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J. Cereb. Blood Flow Metab.23, 381–384 (2003). CASPubMed Google Scholar
Cavaliere, F., Dinkel, K. & Reymann, K. Microglia response and P2 receptor participation in oxygen/glucose deprivation-induced cortical damage. Neuroscience136, 615–623 (2005). CASPubMed Google Scholar
Zhang, Y., Deng, P., Li, Y. & Xu, Z. C. Enhancement of excitatory synaptic transmission in spiny neurons after transient forebrain ischemia. J. Neurophysiol.95, 1537–1544 (2006). PubMed Google Scholar
Schock, S. C. et al. Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res.1168, 129–138 (2007). CASPubMed Google Scholar
Pedata, F. et al. The role of ATP and adenosine in the brain under normoxic and ischemic conditions. Purinergic Signal.3, 299–310 (2007). CASPubMedPubMed Central Google Scholar
Chen, H. H. et al. Extracellular ATP-dependent upregulation of the transcription cofactor LMO4 promotes neuron survival from hypoxia. Exp. Cell Res.313, 3106–3116 (2007). CASPubMed Google Scholar
Briede, J. & Duburs, G. Protective effect of cerebrocrast on rat brain ischaemia induced by occlusion of both common carotid arteries. Cell Biochem. Funct.25, 203–210 (2007). CASPubMed Google Scholar
Volonté, C. et al. Extracellular ATP and neurodegeneration. Curr. Drug Targets. CNS Neurol. Disord.2, 403–412 (2003). PubMed Google Scholar
Watanabe, S., Yoshimi, Y. & Ikekita, M. Neuroprotective effect of adenine on purkinje cell survival in rat cerebellar primary cultures. J. Neurosci. Res.74, 754–759 (2003). CASPubMed Google Scholar
Ogata, T. et al. Adenosine triphosphate inhibits cytokine release from lipopolysaccharide-activated microglia via P2y receptors. Brain Res.981, 174–183 (2003). CASPubMed Google Scholar
Purcell, W. M. & Atterwill, C. K. Mast cells in neuroimmune function: neurotoxicological and neuropharmacological perspectives. Neurochem. Res.20, 521–532 (1995). CASPubMed Google Scholar
Calon, F. et al. Increased adenosine A2A receptors in the brain of Parkinson's disease patients with dyskinesias. Brain127, 1075–1084 (2004). PubMed Google Scholar
Ismayilova, N., Crossman, A., Verkhratsky, A. & Brotchie, J. Effects of adenosine A1, dopamine D1 and metabotropic glutamate 5 receptors-modulating agents on locomotion of the reserpinised rats. Eur. J. Pharmacol.497, 187–195 (2004). CASPubMed Google Scholar
Schwarzschild, M. A. Targeting adenosine A2A receptors in Parkinson's disease and other CNS disorders. Prog. Neurobiol.83, 261–347 (2007). Review of therapeutic treatment of Parkinson's disease with A2Areceptor antagonists. PubMedPubMed Central Google Scholar
Jun, D. & Kim, K. ATP-mediated necrotic volume increase (NVI) in substantia nigra pars compacta dopaminergic neuron. Society for Neuroscience, Washington, DC. Abstr.222, 18 (2004). Google Scholar
Heine, C. et al. P2 receptor expression in the dopaminergic system of the rat brain during development. Neuroscience149, 165–181 (2007). CASPubMed Google Scholar
Morales, I. et al. Substantia nigra osmoregulation: taurine and ATP involvement. Am. J. Physiol. Cell Physiol.292, C1934–C1941 (2007). CASPubMed Google Scholar
Jacobson, K. A. et al. Agonists and antagonists for P2 receptors, in Novartis Foundation Symposium 276 Purinergic Signalling in Neuron–Glial Interactions 58–68 (John Wiley & Sons Ltd., Chichester, 2006). Detailed account of the medicinal chemistry of P2 receptor agonists and antagonists. Google Scholar
Xu, J. et al. Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot. Essent. Fatty Acids69, 437–448 (2003). CASPubMed Google Scholar
Parvathenani, L. K. et al. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J. Biol. Chem.278, 13309–13317 (2003). CASPubMed Google Scholar
McLarnon, J. G., Ryu, J. K., Walker, D. G. & Choi, H. B. Upregulated expression of purinergic P2X7 receptor in Alzheimer disease and amyloid-β peptide-treated microglia and in peptide-injected rat hippocampus. J. Neuropathol. Exp. Neurol.65, 1090–1097 (2006). This study shows an upregulation of P2X7receptors in Alzheimer's disease. CASPubMed Google Scholar
Rampe, D., Wang, L. & Ringheim, G. E. P2X7 receptor modulation of β-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J. Neuroimmunol.147, 56–61 (2004). CASPubMed Google Scholar
Tumini, E. et al. The G51S purine nucleoside phosphorylase polymorphism is associated with cognitive decline in Alzheimer's disease patients. Hum. Psychopharmacol.22, 75–80 (2007). CASPubMed Google Scholar
Moore, D., Iritani, S., Chambers, J. & Emson, P. Immunohistochemical localization of the P2Y1 purinergic receptor in Alzheimer's disease. Neuroreport11, 3799–3803 (2000). CASPubMed Google Scholar
Camden, J. M. et al. P2Y2 nucleotide receptors enhance α-secretase-dependent amyloid precursor protein processing. J. Biol. Chem.280, 18696–18702 (2005). CASPubMed Google Scholar
McLarnon, J. G. et al. Perturbations in calcium-mediated signal transduction in microglia from Alzheimer's disease patients. J. Neurosci. Res.81, 426–435 (2005). CASPubMed Google Scholar
Kalaria, R. N., Sromek, S., Wilcox, B. J. & Unnerstall, J. R. Hippocampal adenosine A1 receptors are decreased in Alzheimer's disease. Neurosci. Lett.118, 257–260 (1990). CASPubMed Google Scholar
Angulo, E. et al. A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol.13, 440–451 (2003). CASPubMed Google Scholar
Martinez-Mir, M. I., Probst, A. & Palacios, J. M. Adenosine A2 receptors: selective localization in the human basal ganglia and alterations with disease. Neuroscience42, 697–706 (1991). CASPubMed Google Scholar
Popoli, P. et al. Adenosine A2A receptor blockade prevents EEG and motor abnormalities in a rat model of Huntington's disease. Drug Dev. Res.50, 69 (2000) Google Scholar
Bauer, A. et al. Striatal loss of A1 adenosine receptors in Huntington's disease — a PET study. J. Neural Transm.114, XXI (2007). Google Scholar
Tarditi, A. et al. Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol. Dis.23, 44–53 (2006). CASPubMed Google Scholar
Popoli, P. et al. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington's disease. Prog. Neurobiol.81, 331–348 (2007). A review of the therapeutic potential of A2Areceptors in Huntington's disease. CASPubMed Google Scholar
Diez-Zaera, M. et al. Purinergic system in Huntington's disease: development of new therapeutic strategies. J. Neurochem.101, S66 (2007). Google Scholar
Andries, M., Van Damme, P., Robberecht, W. & Van Den Bosch, L. Ivermectin inhibits AMPA receptor-mediated excitotoxicity in cultured motor neurons and extends the life span of a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis.25, 8–16 (2007). CASPubMed Google Scholar
Kassa, R. M., Bentivoglio, M. & Mariotti, R. Changes in the expression of P2X1 and P2X2 purinergic receptors in facial motoneurons after nerve lesions in rodents and correlation with motoneuron degeneration. Neurobiol. Dis.25, 121–133 (2007). CASPubMed Google Scholar
Trudeau, F., Gagnon, S. & Massicotte, G. Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur. J. Pharmacol.490, 177–186 (2004). CASPubMed Google Scholar
Cox, D. J. et al. Relationships between hyperglycemia and cognitive performance among adults with type 1 and type 2 diabetes. Diabetes Care28, 71–77 (2005). PubMed Google Scholar
Duarte, J. M., Oses, J. P., Rodrigues, R. J. & Cunha, R. A. Modification of purinergic signaling in the hippocampus of streptozotocin-induced diabetic rats. Neuroscience149, 382–391 (2007). CASPubMed Google Scholar
Lucas, S. M., Rothwell, N. J. & Gibson, R. M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol.147, S232–S240 (2006). CASPubMedPubMed Central Google Scholar
Bours, M. J. et al. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther.112, 358–404 (2006). CASPubMed Google Scholar
Sperlágh, B. & Illes, P. Purinergic modulation of microglial cell activation. Purinergic Signal.3, 117–127 (2007). PubMed Google Scholar
Marchand, F., Perretti, M. & McMahon, S. B. Role of the immune system in chronic pain. Nature Rev. Neurosci.6, 521–532 (2005). CAS Google Scholar
Moalem, G. & Tracey, D. J. Immune and inflammatory mechanisms in neuropathic pain. Brain Res. Rev.51, 240–264 (2006). CASPubMed Google Scholar
Ferrari, D., Stroh, C. & Schulze-Osthoff, K. P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J. Biol. Chem.274, 13205–13210 (1999). CASPubMed Google Scholar
Potucek, Y. D., Crain, J. M. & Watters, J. J. Purinergic receptors modulate MAP kinases and transcription factors that control microglial inflammatory gene expression. Neurochem. Int.49, 204–214 (2006). CASPubMed Google Scholar
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell10, 417–426 (2002). CASPubMed Google Scholar
Di Virgilio, F. Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol. Sci.28, 465–472 (2007). A valuable account of the role of P2X7receptors in immune responses in brain. CASPubMed Google Scholar
Suzuki, T. et al. Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J. Neurosci.24, 1–7 (2004). CASPubMedPubMed Central Google Scholar
Lemaire, I. et al. Involvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells. J. Immunol.177, 7257–7265 (2006). CASPubMed Google Scholar
Takenouchi, T., Sato, M. & Kitani, H. Lysophosphatidylcholine potentiates Ca2+ influx, pore formation and p44/42 MAP kinase phosphorylation mediated by P2X7 receptor activation in mouse microglial cells. J. Neurochem.102, 1518–1532 (2007). CASPubMed Google Scholar
Takenouchi, T. et al. Prion infection correlates with hypersensitivity of P2X7 nucleotide receptor in a mouse microglial cell line. FEBS Lett.581, 3019–3026 (2007). CASPubMed Google Scholar
Guo, L. H., Trautmann, K. & Schluesener, H. J. Expression of P2X4 receptor by lesional activated microglia during formalin-induced inflammatory pain. J. Neuroimmunol.163, 120–127 (2005). CASPubMed Google Scholar
Raouf, R. et al. Differential regulation of microglial P2X4 and P2X7 ATP receptors following LPS-induced activation. Neuropharmacology53, 496–504 (2007). CASPubMed Google Scholar
Abbracchio, M. P. & Verderio, C. Pathophysiological roles of P2 receptors in glial cells, in Novartis Foundation Symposium 276 Purinergic Signalling in Neuron–Glial Interactions 91–103 (John Wiley & Sons Ltd., Chichester, 2006). Google Scholar
Panenka, W. et al. P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J. Neurosci.21, 7135–7142 (2001). CASPubMedPubMed Central Google Scholar
Agresti, C. et al. ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Res. Brain Res. Rev.48, 157–165 (2005). CASPubMed Google Scholar
Narcisse, L. et al. The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia49, 245–258 (2005). PubMedPubMed Central Google Scholar
Spanevello, R. M. et al. Apyrase and 5′-nucleotidase activities in synaptosomes from the cerebral cortex of rats experimentally demyelinated with ethidium bromide and treated with interferon-β. Neurochem. Res.31, 455–462 (2006). CASPubMed Google Scholar
Guo, L. H. & Schluesener, H. J. Lesional accumulation of P2X4 receptor+ macrophages in rat CNS during experimental autoimmune encephalomyelitis. Neuroscience134, 199–205 (2005). CASPubMed Google Scholar
Chen, L. & Brosnan, C. F. Exacerbation of experimental autoimmune encephalomyelitis in P2X7R−/− mice: evidence for loss of apoptotic activity in lymphocytes. J. Immunol.176, 3115–3126 (2006). CASPubMed Google Scholar
Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood110, 1225–1232 (2007). CASPubMed Google Scholar
Knutsen, L. J. S. & Murray, T. F. Adenosine and ATP in epilepsy, in Purinergic Approaches in Experimental Therapeutics (eds Jacobson, K. A. & Jarvis, M. F.) 423–447 (Wiley-Liss, New York, 1997). Google Scholar
Ross, F. M., Brodie, M. J. & Stone, T. W. Modulation by adenine nucleotides of epileptiform activity in the CA3 region of rat hippocampal slices. Br. J. Pharmacol.123, 71–80 (1998). CASPubMedPubMed Central Google Scholar
Vianna, E. P. et al. Evidence that ATP participates in the pathophysiology of pilocarpine-induced temporal lobe epilepsy: fluorimetric, immunohistochemical, and Western blot studies. Epilepsia43, 227–229 (2002). CASPubMed Google Scholar
Rappold, P. M., Lynd-Balta, E. & Joseph, S. A. P2X7 receptor immunoreactive profile confined to resting and activated microglia in the epileptic brain. Brain Res.1089, 171–178 (2006). CASPubMed Google Scholar
Wieraszko, A. & Seyfried, T. N. Increased amount of extracellular ATP in stimulated hippocampal slices of seizure prone mice. Neurosci. Lett.106, 287–293 (1989). An important early experimental study of ATP release in the hippocampus during seizures. CASPubMed Google Scholar
Slézia, A. et al. Uridine release during aminopyridine-induced epilepsy. Neurobiol. Dis16, 490–499 (2004). PubMed Google Scholar
Nicolaidis, R., Bruno, A. N., Sarkis, J. J. & Souza, D. O. Increase of adenine nucleotide hydrolysis in rat hippocampal slices after seizures induced by quinolinic acid. Neurochem. Res.30, 385–390 (2005). CASPubMed Google Scholar
Oses, J. P. Modification by kainate-induced convulsions of the density of presynaptic P2X receptors in the rat hippocampus. Purinergic Signal.2, 252–253 (2006). Google Scholar
Tian, G. F. et al. An astrocytic basis of epilepsy. Nature Med.11, 973–981 (2005). CASPubMed Google Scholar
Dragunow, M. Purinergic mechanisms in epilepsy. Prog. Neurobiol.31, 85–108 (1988). CASPubMed Google Scholar
Zeraati, M. et al. Adenosine A1 and A2A receptors of hippocampal CA1 region have opposite effects on piriform cortex kindled seizures in rats. Seizure15, 41–48 (2006). A study of the roles of adenosine receptors in seizures. PubMed Google Scholar
Ekonomou, A., Angelatou, F., Vergnes, M. & Kostopoulos, G. Lower density of A1 adenosine receptors in nucleus reticularis thalami in rats with genetic absence epilepsy. Neuroreport9, 2135–2140 (1998). CASPubMed Google Scholar
Machado-Vieira, R., Lara, D. R., Souza, D. O. & Kapczinski, F. Purinergic dysfunction in mania: an integrative model. Med. Hypotheses58, 297–304 (2002). CASPubMed Google Scholar
Lam, P., Hong, C. J. & Tsai, S. J. Association study of A2a adenosine receptor genetic polymorphism in panic disorder. Neurosci. Lett.378, 98–101 (2005). CASPubMed Google Scholar
Williams, M. Purinergic receptors and central nervous system function, in Psychopharmacology: The Third Generation of Progress (ed. Meltzer, H. Y.) 289–301 (Raven Press, New York, 1987). Google Scholar
Ward, R. P. & Dorsa, D. M. Molecular and behavioral effects mediated by Gs-coupled adenosine A2a, but not serotonin 5-HT4 or 5-HT6 receptors following antipsychotic administration. Neuroscience89, 927–938 (1999). CASPubMed Google Scholar
Chen, J. F. et al. Selective attenuation of psychostimulant-induced behavioral responses in mice lacking A2A adenosine receptors. Neuroscience97, 195–204 (2000). CASPubMed Google Scholar
Judelson, D. A. et al. Effect of chronic caffeine intake on choice reaction time, mood, and visual vigilance. Physiol. Behav.85, 629–634 (2005). CASPubMed Google Scholar
Wagner, J. A. & Katz, R. J. Purinergic control of anxiety: direct behavioral evidence in the rat. Neurosci. Lett.43, 333–337 (1983). CASPubMed Google Scholar
Johansson, B. et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc. Natl Acad. Sci. USA.98, 9407–9412 (2001). CASPubMedPubMed Central Google Scholar
Kittner, H. et al. Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology28, 435–444 (2003). CASPubMed Google Scholar
Vinadé, E. R. et al. Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Res.977, 97–102 (2003). PubMed Google Scholar
Kaster, M. P. et al. Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors. Neurosci. Lett.355, 21–24 (2004). A study describing the involvement of A1and A2Areceptors in depression. CASPubMed Google Scholar
Alesci, S. et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J. Clin. Endocrinol. Metab.90, 2522–2530 (2005). CASPubMed Google Scholar
Lucae, S. et al. P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum. Mol. Genet.15, 2438–2445 (2006). A description of the involvement of P2X7receptors in depression. CASPubMed Google Scholar
Barden, N. et al. Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.141, 374–382 (2006). Google Scholar
Busnello, J. V. et al. Acute and chronic electroconvulsive shock in rats: effects on peripheral markers of neuronal injury and glial activity. Life Sci.78, 3013–3017 (2006). CASPubMed Google Scholar
Ushijima, I. et al. Effects of dilazep (Comelian) on the central purinergic system: inhibitory effects on clonidine-induced aggressive behavior. Eur. J. Pharmacol.161, 245–248 (1989). CASPubMed Google Scholar
Zou, C. J., Onaka, T. O. & Yagi, K. Effects of suramin on neuroendocrine and behavioural responses to conditioned fear stimuli. Neuroreport9, 997–999 (1998). CASPubMed Google Scholar
Corodimas, K. P. & Tomita, H. Adenosine A1 receptor activation selectively impairs the acquisition of contextual fear conditioning in rats. Behav. Neurosci.115, 1283–1290 (2001). CASPubMed Google Scholar
Krügel, U. et al. P2 receptors are involved in the mediation of motivation-related behavior. Purinergic Signal.1, 21–29 (2004). PubMedPubMed Central Google Scholar
Short, J. L., Ledent, C., Drago, J. & Lawrence, A. J. Receptor crosstalk: characterization of mice deficient in dopamine D1 and adenosine A2A receptors. Neuropsychopharmacology31, 525–534 (2006). CASPubMed Google Scholar
Van Calker, D. & Biber, K. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders. Neurochem. Res.30, 1205–1217 (2005). PubMed Google Scholar
Inoue, K., Koizumi, S. & Ueno, S. Implication of ATP receptors in brain functions. Prog. Neurobiol.50, 483–492 (1996). CASPubMed Google Scholar
Lara, D. R., Dall'Igna, O. P., Ghisolfi, E. S. & Brunstein, M. G. Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog. Neuropsychopharmacol. Biol. Psychiatry30, 617–629 (2006). This paper suggests that adenosine A1receptors are involved in schizophrenia. CASPubMed Google Scholar
Kafka, S. H. & Corbett, R. Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. Eur. J. Pharmacol.295, 147–154 (1996). CASPubMed Google Scholar
Tsai, S. J. Adenosine A2a receptor/dopamine D2 receptor hetero-oligomerization: a hypothesis that may explain behavioral sensitization to psychostimulants and schizophrenia. Med. Hypotheses64, 197–200 (2005). CASPubMed Google Scholar
Lara, D. R. & Souza, D. O. Schizophrenia: a purinergic hypothesis. Med. Hypotheses54, 157–166 (2000). CASPubMed Google Scholar
Deckert, J. et al. Up-regulation of striatal adenosine A2A receptors in schizophrenia. Neuroreport14, 313–316 (2003). CASPubMed Google Scholar
Yee, B. K. et al. Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs. Eur. J. Neurosci.26, 3237–3252 (2007). PubMed Google Scholar
Franke, H., Kittner, H., Grosche, J. & Illes, P. Enhanced P2Y1 receptor expression in the brain after sensitisation with d-amphetamine. Psychopharmacology (Berl)167, 187–194 (2003). CAS Google Scholar
Davies, D. L. et al. Ethanol differentially affects ATP-gated P2X3 and P2X4 receptor subtypes expressed in Xenopus oocytes. Neuropharmacology49, 243–253 (2005). CASPubMed Google Scholar
Burnstock, G. Purine-mediated signalling in pain and visceral perception. Trends Pharmacol. Sci.22, 182–188 (2001). CASPubMed Google Scholar
Burnstock, G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol. Therap.110, 433–454 (2006). A comprehensive review of the use of P2 receptor antagonists for the treatment of pain. CAS Google Scholar
Honore, P. et al. Analgesic profile of intrathecal P2X3 antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain99, 11–19 (2002). CASPubMed Google Scholar
Bardoni, R. et al. ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J. Neurosci.17, 5297–5304 (1997). CASPubMedPubMed Central Google Scholar
Jo, Y. H. & Schlichter, R. Synaptic corelease of ATP and GABA in cultured spinal neurons. Nature Neurosci.2, 241–245 (1999). CASPubMed Google Scholar
Tsuda, M. et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature424, 778–783 (2003). Seminal paper implicating microglial P2X4receptors in neuropathic pain. CASPubMed Google Scholar
McGaraughty, S. & Jarvis, M. F. Purinergic control of neuropathic pain. Drug Dev. Res.67, 376–388 (2006). CAS Google Scholar
Inoue, K. P2 receptors and chronic pain. Purinergic Signal.3, 135–144 (2007). Updated review on P2X3, P2X4and P2X7receptors in neuropathic pain. CASPubMedPubMed Central Google Scholar
Scholz, J. & Woolf, C. J. The neuropathic pain triad: neurons, immune cells and glia. Nature Neurosci.10, 1361–1368 (2007). CASPubMed Google Scholar
Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature438, 1017–1021 (2005). CASPubMed Google Scholar
Nasu-Tada, K. et al. Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X4, a key molecule for mechanical allodynia. Glia53, 769–775 (2006). PubMed Google Scholar
Guo, L. H., Guo, K. T., Wendel, H. P. & Schluesener, H. J. Combinations of TLR and NOD2 ligands stimulate rat microglial P2X4R expression. Biochem. Biophys. Res. Commun.349, 1156–1162 (2006). CASPubMed Google Scholar
Tsuda, M. et al. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia45, 89–95 (2004). PubMed Google Scholar
Morita, K. et al. Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice. Pain111, 351–359 (2004). CASPubMed Google Scholar
Inoue, K. ATP receptors of microglia involved in pain, in Novartis Foundation Symposium 276 Purinergic Signalling in Neuron–Glial Interactions 263–274 (John Wiley & Sons Ltd., Chichester, 2006). Google Scholar
Trang, T., Beggs, S. & Salter, M. W. Purinoceptors in microglia and neuropathic pain. Pflugers Arch.452, 645–652 (2006). CASPubMed Google Scholar
Chessell, I. P. et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain114, 386–396 (2005). This paper describes the loss of neuropathic pain in P2X3receptor knockout mice. CASPubMed Google Scholar
Chessell, I. P. et al. The role of P2X7 and P2X4 in pain processing; common or divergent pathways? Purinergic Signal.2, 46–47 (2006). Google Scholar
Guo, C., Masin, M., Qureshi, O. S. & Murrell-Lagnado, R. D. Evidence for functional P2X4/P2X7 heteromeric receptors. Mol. Pharmacol.72, 1447–1456 (2007). CASPubMed Google Scholar
Okada, M., Nakagawa, T., Minami, M. & Satoh, M. Analgesic effects of intrathecal administration of P2Y nucleotide receptor agonists UTP and UDP in normal and neuropathic pain model rats. J. Pharmacol. Exp. Ther.303, 66–73 (2002). CASPubMed Google Scholar
Ruan, H. Z. & Burnstock, G. Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem. Cell Biol.120, 415–426 (2003). CASPubMed Google Scholar
Selden, N. R. et al. Purinergic actions on neurons that modulate nociception in the rostral ventromedial medulla. Neuroscience146, 1808–1816 (2007). CASPubMed Google Scholar
Gerevich, Z. et al. Metabotropic P2Y receptors inhibit P2X3 receptor-channels via G protein-dependent facilitation of their desensitization. Br. J. Pharmacol.151, 226–236 (2007). CASPubMedPubMed Central Google Scholar
Nakagawa, T. et al. Intrathecal administration of ATP produces long-lasting allodynia in rats: differential mechanisms in the phase of the induction and maintenance. Neuroscience147, 445–455 (2007). This study shows that P2X3and P2X2/3receptor antagonists prevent the induction of tactile allodynia. CASPubMed Google Scholar
Ueno, S. et al. Involvement of P2X2 and P2X3 receptors in neuropathic pain in a mouse model of chronic constriction injury. Drug Dev. Res.59, 104–111 (2003). CAS Google Scholar
Tsuda, M., Hasegawa, S. & Inoue, K. P2X receptor-mediated cytosolic phospholipase A2 activation in primary afferent sensory neurons contributes to neuropathic pain. J. Neurochem.103, 1408–1416 (2007). CASPubMed Google Scholar
Chen, Y. et al. Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state. Pain119, 38–48 (2005). CASPubMed Google Scholar
McGaraughty, S. et al. Endogenous opioid mechanisms partially mediate P2X3/P2X2/3-related antinociception in rat models of inflammatory and chemogenic pain but not neuropathic pain. Br. J. Pharmacol.146, 180–188 (2005). CASPubMedPubMed Central Google Scholar
Wirkner, K., Sperlagh, B. & Illes, P. P2X3 receptor involvement in pain states. Mol. Neurobiol.36, 165–183 (2007). CASPubMed Google Scholar
Hughes, J. P., Hatcher, J. P. & Chessell, I. P. The role of P2X7 in pain and inflammation. Purinergic Signal.3, 163–169 (2007). CASPubMedPubMed Central Google Scholar
McGaraughty, S. et al. P2X7-related modulation of pathological nociception in rats. Neuroscience146, 1817–1828 (2007). The authors of this study used a selective P2X7receptor antagonist, A438079, for the treatment of chronic pain. CASPubMed Google Scholar
McQuay, H. J. et al. A systematic review of antidepressants in neuropathic pain. Pain68, 217–227 (1996). CASPubMed Google Scholar
Pedrazza, E. L. et al. Sertraline and clomipramine inhibit nucleotide catabolism in rat brain synaptosomes. Toxicol. In Vitro21, 671–676 (2007). CASPubMed Google Scholar
Akkari, R., Burbiel, J. C., Hockemeyer, J. & Müller, C. E. Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. Curr. Top. Med. Chem.6, 1375–1399 (2006). CASPubMed Google Scholar
Burnstock, G. The role of adenosine triphosphate in migraine. Biomed. Pharmacother.43, 727–736 (1989). CASPubMed Google Scholar
Ambalavanar, R., Moritani, M. & Dessem, D. Trigeminal P2X3 receptor expression differs from dorsal root ganglion and is modulated by deep tissue inflammation. Pain117, 280–291 (2005). CASPubMed Google Scholar
Fabbretti, E. et al. Delayed upregulation of ATP P2X3 receptors of trigeminal sensory neurons by calcitonin gene-related peptide. J. Neurosci.26, 6163–6171 (2006). CASPubMedPubMed Central Google Scholar
Chen, C. C. et al. A P2X purinoceptor expressed by a subset of sensory neurons. Nature377, 428–431 (1995). Seminal paper reporting the cloning of P2X3receptors and their localization in nociceptive sensory neurons. CASPubMed Google Scholar
Fumagalli, M., Ceruti, S., Verderio, C. & Abbracchio, M. P. ATP as a neurotransmitter of pain in migraine: a functional role for P2Y receptors in primary cultures from mouse trigeminal sensory ganglia. Purinergic Signal.2, 120–121 (2006). Google Scholar
D'Arco, M. et al. Neutralization of nerve growth factor induces plasticity of ATP-sensitive P2X3 receptors of nociceptive trigeminal ganglion neurons. J. Neurosci.27, 8190–8201 (2007). CASPubMedPubMed Central Google Scholar
Shapiro, R. E. Caffeine and headaches. Neurol. Sci.28, S179–S183 (2007). PubMed Google Scholar
Humphrey, P. P. A. The discovery of a new drug class for the acute treatment of migraine. Headache47, S10–S19 (2007). PubMed Google Scholar
Hohoff, C. et al. An adenosine A2A receptor gene haplotype is associated with migraine with aura. Cephalalgia27, 177–181 (2007). CASPubMed Google Scholar
Gever, J. et al. Pharmacology of P2X channels. Pflugers Arch.452, 513–537 (2006). Good review of the identification and effectiveness of P2X receptor antagonists, including RO3, a P2X3antagonist that is orally bioavailable and stablein vivo. CASPubMed Google Scholar
Wilot, L. C. et al. Lithium and valproate protect hippocampal slices against ATP-induced cell death. Neurochem. Res.32, 1539–1546 (2007). CASPubMed Google Scholar
Chang, G., Chen, L. & Mao, J. Opioid tolerance and hyperalgesia. Med. Clin. North Am.91, 199–211 (2007). CASPubMed Google Scholar
Ho, B. T. et al. Analgesic activity of anticancer agent suramin. Anticancer Drugs3, 91–94 (1992). CASPubMed Google Scholar
Fellin, T. et al. Bidirectional astrocyte-neuron communication: the many roles of glutamate and ATP, in Novartis Foundation Symposium 276 Purinergic Signalling in Neuron–Glial Interactions 208–221 (John Wiley & Sons Ltd., Chichester, 2006). Google Scholar
Patti, L. et al. P2X7 receptors exert a permissive role on the activation of release-enhancing presynaptic α7 nicotinic receptors co-existing on rat neocortex glutamatergic terminals. Neuropharmacology50, 705–713 (2006). CASPubMed Google Scholar
Rodrigues, R. J. et al. Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y 2, and/or P2Y4 receptors in the rat hippocampus. J. Neurosci.25, 6286–6295 (2005). CASPubMedPubMed Central Google Scholar
Pankratov, Y., Lalo, U., Verkhratsky, A. & North, R. A. Vesicular release of ATP at central synapses. Pflugers Arch.452, 589–597 (2006). CASPubMed Google Scholar
Bodin, P. & Burnstock, G. Purinergic signalling: ATP release. Neurochem. Res.26, 959–969 (2001). CASPubMed Google Scholar
Montana, V. et al. Vesicular transmitter release from astrocytes. Glia54, 700–715 (2006). PubMed Google Scholar
Zhang, Z. et al. Regulated ATP release from astrocytes through lysosome exocytosis. Nature Cell Biol.9, 945–953 (2007). An original paper describing release of ATP from astrocytes via lysosome exocytosis. CASPubMed Google Scholar
Stout, C. E., Costantin, J. L., Naus, C. C. & Charles, A. C. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol. Chem.277, 10482–10488 (2002). CASPubMed Google Scholar
Wall, M. J. & Dale, N. Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J. Physiol.581, 553–565 (2007). PubMedPubMed Central Google Scholar
Martín, E. D. et al. Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia55, 36–45 (2007). PubMed Google Scholar
Zimmermann, H. et al. Ecto-nucleotidases, molecular properties and functional impact. An. R. Acad. Nac. Farm.73, 537–566 (2007). An excellent update of knowledge of ecto-nucleotidases. CAS Google Scholar
Burnstock, G. & Wood, J. N. Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr. Opin. Neurobiol.6, 526–532 (1996). CASPubMed Google Scholar
Sperlágh, B., Zsilla, G., Baranyi, M., Illes, P. & Vizi, E. S. Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus. Neuroscience149, 99–111 (2007). PubMed Google Scholar
Ribeiro, J. A., Sebastião, A. M. & de Mendonça, A. Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol.68, 377–392 (2003). Google Scholar
Braganhol, E., Tamajusuku, A. S., Bernardi, A., Wink, M. R. & Battastini, A. M. Ecto-5′-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line. Biochim. Biophys. Acta1770, 1352–1359 (2007). CASPubMed Google Scholar
Synowitz, M. et al. A1 adenosine receptors in microglia control glioblastoma-host interaction. Cancer Res.66, 8550–8557 (2006). CASPubMed Google Scholar
Vianna, E. P., Ferreira, A. T., Doná, F., Cavalheiro, E. A. & da Silva Fernandes, M. J. Modulation of seizures and synaptic plasticity by adenosinergic receptors in an experimental model of temporal lobe epilepsy induced by pilocarpine in rats. Epilepsia46, 166–173 (2005). CASPubMed Google Scholar
Hosseinmardi, N., Mirnajafi-Zadeh, J., Fathollahi, Y. & Shahabi, P. The role of adenosine A1 and A2A receptors of entorhinal cortex on piriform cortex kindled seizures in rats. Pharmacol. Res.56, 110–117 (2007). CASPubMed Google Scholar
Liu, H. Q., Zhang, W. Y., Luo, X. T., Ye, Y. & Zhu, X. Z. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. Br. J. Pharmacol.148, 314–325 (2006). CASPubMedPubMed Central Google Scholar
Rathbone, M. P. et al. Trophic effects of purines in neurons and glial cells. Prog. Neurobiol.59, 663–690 (1999). CASPubMed Google Scholar
Reece, T. B. et al. Adenosine A2A analogue reduces long-term neurologic injury after blunt spinal trauma. J. Surg. Res.121, 130–134 (2004). CASPubMed Google Scholar
Mojsilovic-Petrovic, J. et al. Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J. Neurosci.26, 9250–9263 (2006). CASPubMedPubMed Central Google Scholar
Fuxe, K., Ferre, S., Genedani, S., Franco, R. & Agnati, L. F. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol. Behav.92, 210–217 (2007). CASPubMed Google Scholar
O'Neill, M. & Brown, V. J. The effect of the adenosine A2A antagonist KW-6002 on motor and motivational processes in the rat. Psychopharmacology (Berl)184, 46–55 (2006). CAS Google Scholar
Shields, C. B. et al. Treatment of spinal cord injury via topical perfusion with an ATP solution. Society for Neuroscience, Washington, DC. Abstr.418, 8 (2004). Google Scholar
Cakir, E., Baykal, S., Karahan, S. C., Kuzeyli, K. & Uydu, H. Acute phase effects of ATP-MgCl2 on experimental spinal cord injury. Neurosurg. Rev.26, 67–70 (2003). PubMed Google Scholar
Kim, D. S., Kwak, S. E., Kim, J. E., Won, M. H. & Kang, T. C. The co-treatments of vigabatrin and P2X receptor antagonists protect ischemic neuronal cell death in the gerbil hippocampus. Brain Res.1120, 151–160 (2006). CASPubMed Google Scholar
Lin, Y., Desbois, A., Jiang, S. & Hou, S. T. P2 receptor antagonist PPADS confers neuroprotection against glutamate/NMDA toxicity. Neurosci. Lett.377, 97–100 (2005). CASPubMed Google Scholar
Wang, Y. et al. Diadenosine tetraphosphate protects against injuries induced by ischemia and 6-hydroxydopamine in rat brain. J. Neurosci.23, 7958–7965 (2003). CASPubMedPubMed Central Google Scholar
Morrone, F. B. et al. In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer6, 226 (2006). PubMedPubMed Central Google Scholar
Waeber, C. & Moskowitz, M. A. Therapeutic implications of central and peripheral neurologic mechanisms in migraine. Neurology61, S9–20 (2003). PubMed Google Scholar
Dell'Antonio, G., Quattrini, A., Cin, E. D., Fulgenzi, A. & Ferrero, M. E. Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. Arthritis Rheum.46, 3378–3385 (2002). CASPubMed Google Scholar
Witting, A., Walter, L., Wacker, J., Moller, T. & Stella, N. P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. Proc. Natl Acad. Sci. USA.101, 3214–3219 (2004). CASPubMedPubMed Central Google Scholar
Honore, P. et al. A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2, 2-dimethylpropyl)-2-(3, 4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J. Pharmacol. Exp. Ther.319, 1376–1385 (2006). CASPubMed Google Scholar
Donnelly-Roberts, D. L. & Jarvis, M. F. Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br. J. Pharmacol.151, 571–579 (2007). Updated review of the use of P2X7receptor antagonists against chronic pain. CASPubMedPubMed Central Google Scholar