Clinical experiences with systemically administered siRNA-based therapeutics in cancer (original) (raw)
Fire, A. Z. Gene silencing by double-stranded RNA (Nobel Lecture). Angew. Chem. Int. Ed.46, 6966–6984 (2007). This paper provides a brief history and background on RNAi. CAS Google Scholar
Burnett, J. C. & Rossi, J. J. RNA-based therapeutics: current progress and future prospects. Chem. Biol.19, 60–71 (2012). CASPubMedPubMed Central Google Scholar
de Fougerolles, A., Vornlocher, H.-P., Maraganore, J. & Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov.6, 443–453 (2007). CASPubMedPubMed Central Google Scholar
Sepp-Lorenzino, L. & Ruddy, M. K. Challenges and opportunities for local and systemic delivery of siRNA and antisense oligonucleotides. Clin. Pharmacol. Ther.84, 628–632 (2008). CASPubMed Google Scholar
Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8, 129–138 (2009). CASPubMedPubMed Central Google Scholar
Chen, S.-H. & Zhaori, G. Potential clinical applications of siRNA technique: benefits and limitations. Eur. J. Clin. Invest.41, 221–232 (2011). CASPubMed Google Scholar
Pecot, C. V., Calin, G. A., Coleman, R. L., Lopez-Berestein, G. & Sood, A. K. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer11, 59–67 (2011). CASPubMed Google Scholar
Wu, S. Y., Lopez-Berestein, G., Calin, G. A. & Sood, A. K. RNAi therapies: drugging the undruggable. Sci. Transl. Med.6, 240ps7 (2014). PubMedPubMed Central Google Scholar
Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov.7, 771–782 (2008). This paper reviews the area of nanoparticle-based anticancer therapeutics. CASPubMed Google Scholar
Egusquiaguirre, S. P., Igartua, M. Hernández, R. M. & Pedraz, J. L. Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin. Transl. Oncol.14, 83–93 (2012). This paper reviews the different types of delivery of siRNA and the materials used to facilitate the delivery of siRNA. CASPubMed Google Scholar
Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater.12, 967–977 (2013). CASPubMed Google Scholar
Gomes da Silva, L. C., Simões, S. & Moreira, J. N. Challenging the future of siRNA therapeutics against cancer: the crucial role of nanotechnology. Cell. Mol. Life Sci.21, 1417–1438 (2014). Google Scholar
Behlke, M. A. Chemical modification of siRNAs for in vivo use. Oligonucleotides18, 305–320 (2008). CASPubMed Google Scholar
Rettig, G. R. & Behlke, M. A. Progress toward in vivo use of siRNAs-II. Mol. Ther.20, 483–512 (2012). This paper describes advances in siRNA biochemistry forin vivouse. CASPubMed Google Scholar
Bartlett, D. W. & Davis, M. E. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucl. Acids Res.34, 322–333 (2006). CASPubMedPubMed Central Google Scholar
Bartlett, D. W. & Davis, M. E. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotech. Bioeng.99, 975–985 (2008). CAS Google Scholar
Yuan, T. L. et al. Development of siRNA payloads to target _KRAS_-mutant cancer. Cancer Discov.4, 1182–1197 (2014). This paper nicely demonstrates thein vivouse of multiple different siRNAs within the same nanoparticle and the enhanced efficacy that can be obtained from such an approach. CASPubMedPubMed Central Google Scholar
Koldehoff, M., Steckel, N. K., Beelen, D. W. & Elmaagacli, A. H. Therapeutic application of small interfering RNA directed against BCR–ABL transcripts to a patient with imatinib-resistant chronic myeloid leukaemia. Clin. Exp. Med.7, 47–55 (2007). CASPubMed Google Scholar
Molitoris, B. A. et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J. Am. Soc. Nephrol.20, 1754–1764 (2009). CASPubMedPubMed Central Google Scholar
Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov.9, 615–627 (2010). CASPubMed Google Scholar
Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med.369, 819–829 (2013). This study reports clinical results for lipid-based siRNA delivery to the liver. CASPubMed Google Scholar
Fitzgerald, K. et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blinded placebo-controlled, Phase 1 trial. Lancet383, 60–68 (2014). This study reports results from a Phase I trial that utilized a lipid-based formulation of siRNA for delivery to the liver. CASPubMed Google Scholar
Nair, J. K. et al. Multivalent _N_-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc.136, 16958–16961 (2014). CASPubMed Google Scholar
Golan, T. et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget[online], (2015).
Farooqi, A. A., Rehman, Z. & Muntane, J. Antisense therapeutics in oncology: current status. Onco. Targets Ther.7, 2035–2042 (2014). CASPubMedPubMed Central Google Scholar
Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature464, 1067–1070 (2010). This paper reported the first example of the RNAi mechanism of action in a human from the delivery of siRNA via a polymer-based nanoparticle, that localized in human tumours in amounts that correlated with the dose levels systemically administered to the patients. CASPubMedPubMed Central Google Scholar
Zuckerman, J. E. et al. Correlating animal and human Phase Ia/Ib clinical data with CALAA 01, a targeted, polymer-based nanoparticle containing siRNA. Proc. Natl Acad. Sci. USA111, 11449–11454 (2014). This paper summarizes all the clinical and preclinical results with CALAA 01. CASPubMedPubMed Central Google Scholar
Tabernero, J. et al. First in humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov.3, 406–417 (2013). This study reports the first human results with ALN-VSP, a lipid-based formulation of two siRNAs. It is also the first example of two siRNAs used in the clinic. CASPubMed Google Scholar
Strumberg, D. et al. Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int. J. Clin. Pharm. Ther.50, 76–78 (2012). CAS Google Scholar
Schultheis, B. et al. First in human Phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol.32, 4141–4148 (2014). This paper presents the first human data with Atu027, a lipid-based formulation of siRNA. CASPubMed Google Scholar
Ramanathan, R. K. et al. A Phase 1 dose escalation study of TKM 080301, a RNAi therapetuic directed against PLK1, in patients with advanced solid tumors. J. Clin. Oncol.31 (Suppl), TPS2621 (2013). Google Scholar
Tolcher, A. W. et al. A Phase 1 study of the BCL2 targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemoth. Pharm.73, 363–371 (2014). CAS Google Scholar
Davis, M. E. The first targeted delivery of siRNA in humans via a self-assembling cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm.6, 659–668 (2009). CASPubMed Google Scholar
Davis, M. E. Fighting cancer with nanoparticle medicines — the nanoscale matters. MRS Bull.37, 828–835 (2012). CAS Google Scholar
Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature441, 537–541 (2006). CASPubMed Google Scholar
Heidel, J. D. et al. Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clin. Cancer Res.13, 2207–2215 (2007). CASPubMed Google Scholar
Barros, S. A. & Gollob, J. A. Safety profile of RNAi nanomedicines. Adv. Drug Deliv. Rev.64, 1730–1737 (2012) CASPubMed Google Scholar
Judge, A. D. et al. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J. Clin. Invest.119, 661–673 (2009). CASPubMedPubMed Central Google Scholar
Sioud, M. Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uredines in immune responses. Eur. J. Immunol.36, 1222–1230 (2006). CASPubMed Google Scholar
Heidel, J. D. et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase submit M2 siRNA. Proc. Natl Acad. Sci. USA104, 5715–5721 (2007). CASPubMedPubMed Central Google Scholar
Inaba, S. et al. Atelocollagen-mediated systemic delivery prevents immunostimulatory adverse effects of siRNA in mammals. Mol. Ther.20, 356–366 (2012). CASPubMed Google Scholar
Moyano, D. F. et al. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc.134, 3965–3967 (2012). CASPubMedPubMed Central Google Scholar
Hickerson, R. P. et al. Stability study of unmodified siRNA and relevance to clinical use. Oligonucleotides18, 1–10 (2008). Google Scholar
Bartlett, D. W. & Davis, M. E. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnol. Bioeng.97, 909–921 (2007). CASPubMed Google Scholar
Zuckerman, J. E., Hsueh, T., Koya, R. C., Davis, M. E. & Ribas, A. siRNA knockdown of ribonucleotide reductase inhibits melanoma cell line proliferation alone or synergistically with temozolomide. J. Invest. Derm.131, 453–460 (2011). CASPubMed Google Scholar
Cheng, Z. et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science338, 903–910 (2012). CASPubMedPubMed Central Google Scholar
Hu Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E. & Triche, T. J. Sequence-specific knockdown of EWS-FL1 by targeted, nonviral delivery of small interfering, RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res.65, 8984–8992 (2005). CASPubMed Google Scholar
Bartlett, D. W., Su, H., Hildebrandt, I. J., Weber, W. A. & Davis, M. E. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl Acad. Sci. USA104, 15549–15554 (2007). CASPubMedPubMed Central Google Scholar
Sykes, E. A. et al. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano.8, 5696–5706 (2014). CASPubMed Google Scholar
Senzer, N. et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther.21, 1096–1103 (2013). CASPubMedPubMed Central Google Scholar
Bertrand, N. et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Del. Rev.66, 2–25 (2014). CAS Google Scholar
Zuckerman, J. E., Choi, C. H. J., Han, H. & Davis, M. E. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl Acad. Sci. USA109, 3137–3142 (2012). CASPubMedPubMed Central Google Scholar
Naeye, B. et al. In vivo disassembly of IV administered siRNA matrix nanoparticles at the renal filtration barrier. Biomaterials34, 2350–2358 (2013). CASPubMed Google Scholar
Song, G., Wu, H., Yoshino, K. & Zamboni, W. C. Factors affecting the pharmacokinetics and pharmacodynamics of liposomal drugs. J. Liposome Res.22, 177–192 (2012). CASPubMed Google Scholar
Eliasof, S. et al. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc. Natl Acad. Sci. USA110, 15127–15132 (2013). This paper reports correlations between preclinical and clinical data for the polymer-based, drug-containing nanoparticle denoted CRLX101. CASPubMedPubMed Central Google Scholar
Venditto, V. J. & Szoka, F. C. Jr. Cancer nanomedicines: so many papers and so few drugs! Adv. Drug Del. Rev.65, 80–88 (2013). CAS Google Scholar
Stein, C. A. & Goel, S. Therapeutic oligonucleotides: the road not taken. Clin. Cancer Res.17, 6369–6372 (2011). CASPubMed Google Scholar
[No authors listed.] Time to deliver. Nat. Biotech.32, 961 (2014).
Merritt, W. M., Bar-Eli, M. & Sood, A. K. The dicey role of Dicer: implications for RNAi therapy. Cancer Res.70, 2571–2574 (2010). CASPubMedPubMed Central Google Scholar
Merritt, W. M. et al. Dicer, drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med.359, 2641–2650 (2008). CASPubMedPubMed Central Google Scholar
Caffrey, E. et al. Prognostic significance of deregulated dicer expression in breast cancer. PLoS ONE8, e83724 (2013). PubMedPubMed Central Google Scholar
Daige, C. L. et al. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol. Cancer Ther.13, 2352–2360 (2014). CASPubMed Google Scholar
Cheng, C. J. et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature518, 107–110 (2015). CASPubMed Google Scholar
Dounda, J. A. & Charpenter, E. The new frontier of genome engineering with CRISPER Cas9. Science346, 1258096 (2014). Google Scholar
Tang, L. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl Acad. Sci. USA111, 15344–15349 (2014). CASPubMedPubMed Central Google Scholar
Adjei, I. M. et al. Heterogeneity in nanoparticles influences biodistribution and targeting. Nanomedicine9, 267–278 (2014). CASPubMed Google Scholar
Zhang, J. et al. Assessing the heterogeneity level in lipid nanoparticles for siRNA delivery: size-based separation, compositional heterogeneity, and impact on bioperformance. Mol. Pharm.10, 397–405 (2013). CASPubMed Google Scholar
Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticle for systemic delivery of RNAi therapeutics. Mol. Ther.21, 1570–1578 (2013). CASPubMedPubMed Central Google Scholar
Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun.5, 4277 (2014). CASPubMed Google Scholar
Barrett, S. E. et al. Development of a liver-targeted siRNA delivery platform with a broad therapeutic window utilizing biodegradable polypeptide-based polymer conjugates. J. Control. Release183, 124–137 (2014). CASPubMed Google Scholar
Lane, L. A., Qian, X., Smith, A. M. & Nie, S. Physical chemistry of nanomedicine: understanding the complex behavior of nanoparticles in vivo. Annu. Rev. Phys. Chem.66, 521–547 (2015). CASPubMedPubMed Central Google Scholar
Landesman-Milo, D. & Peer, D. Toxicity profiling of several common RNAi-based nanomedicines: a comparative study. Drug Deliv. Transl. Res.4, 96–103 (2014). CASPubMed Google Scholar
Hwang, T., Aljuffali, I. A., Lin, C., Chang, Y. & Fang, J. Cationic additives in nanosystems activate cytotoxicity and imflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles. Int. J. Nanomed.10, 371–385 (2015). Google Scholar
Robbins, G. R. et al. Analysis of human innate immune responses to PRINT fabricated nanoparticles with cross validation using a humanized mouse model. Nanomedicine11, 589–599 (2015). CASPubMed Google Scholar
Li, L. et al. Tumor vasculature is a key determinant of the efficiency of nanoparticle-mediated siRNA delivery. Gene Ther.19, 775–780 (2012). CASPubMed Google Scholar
Cabral, H. et al. Accumulation of sub 100nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotech.6, 815–823 (2011). CAS Google Scholar
Prabhaker, U. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res.73, 2412–2417 (2013). Google Scholar
Koukourakis, M. I. et al. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J. Clin. Oncol.17, 3512–3521 (1999). CASPubMed Google Scholar
Karrington, K. J. et al. Effective targeting of solid tumors in patients with locally advanced cancer by radiolabeled pegylated liposomes. Clin. Cancer Res.7, 243–254 (2001). Google Scholar
Cuellar, T. L. et al. Systemic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB–siRNA conjugates. Nucleic Acids Res.43, 1189–1203 (2015). CASPubMed Google Scholar
Weiss, G. J. et al. First in human Phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest. New Drugs31, 986–1000 (2013). CASPubMedPubMed Central Google Scholar
Suetsugu, A. et al. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv. Drug Del. Rev.65, 383–390 (2013). CAS Google Scholar
Sehgal, A. Chen, Q. Gibbings, D., Sah, D. W. Y. & Bumcrot, D. Tissue-specific gene silencing monitored in circulating RNA. RNA20, 1–7 (2014). Google Scholar
Antanaviciute, I. et al. Long-distance communication between laryngeal carcinoma cells. PLoS ONE9, e99196 (2014). PubMedPubMed Central Google Scholar
Melo, S. A. et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell26, 707–721 (2014). CASPubMedPubMed Central Google Scholar
Hannafon, B. N. & Ding, W. Intercellular comminucaiton by exosome-derived microRNAs in cancer. Int. J. Mol. Sci.14, 14240–14269 (2013). PubMedPubMed Central Google Scholar
Roberts, C. T. Jr & Kurre, P. Vesicle trafficking and RNA transfer add complexity and connectivity to cell–cell communication. Cancer Res.73, 3200–3205 (2015). Google Scholar
Dienstmann, R. et al. Safety and activity of the first in class Sym004 anti-EGFR antibody mixture in patients with refractory colorectal cancer. Cancer Discov.5, 598–609 (2015). CASPubMed Google Scholar
Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer7, 169–181 (2007). CASPubMed Google Scholar
Fedornko, I. V., Gibney, G. T., Sondak, V. K. & Smalley, K. S. M. Beyond, BRAF: where next for melanoma therapy? Br. J. Cancer112, 217–226 (2015). Google Scholar