1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature491, 56–65 (2012).
Evangelou, E. & Ioannidis, J. P. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet.14, 379–389 (2013). CASPubMed Google Scholar
Lin, D. Y. & Zeng, D. Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data. Genet. Epidemiol.34, 60–66 (2010). CASPubMed Google Scholar
Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet.88, 586–598 (2011). This study introduces a powerful new random-effects meta-analysis method that uses a null model of no heterogeneity. CASPubMedPubMed Central Google Scholar
Han, B. & Eskin, E. Interpreting meta-analyses of genome-wide association studies. PLoS Genet.8, e1002555 (2012). CASPubMedPubMed Central Google Scholar
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet.44, 369–375 (2012). This study demonstrates that conditional association analysis can be performed using summary statistics. CASPubMedPubMed Central Google Scholar
Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet.46, 1173–1186 (2014). CASPubMedPubMed Central Google Scholar
Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature518, 197–206 (2015). CASPubMedPubMed Central Google Scholar
Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the genetic architecture of 30 complex traits from summary association data. Am. J. Hum. Genet.99, 139–153 (2016). CASPubMedPubMed Central Google Scholar
Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet.11, 499–511 (2010). CASPubMed Google Scholar
Wen, X. & Stephens, M. Using linear predictors to impute allele frequencies from summary or pooled genotype data. Ann. Appl. Stat.4, 1158–1182 (2010). This study is the first to show that Gaussian imputation methods can be applied to summary-level genetic data. PubMedPubMed Central Google Scholar
Kostem, E., Lozano, J. A. & Eskin, E. Increasing power of genome-wide association studies by collecting additional single-nucleotide polymorphisms. Genetics188, 449–460 (2011). CASPubMedPubMed Central Google Scholar
Lee, D., Bigdeli, T. B., Riley, B. P., Fanous, A. H. & Bacanu, S. A. DIST: direct imputation of summary statistics for unmeasured SNPs. Bioinformatics29, 2925–2927 (2013). CASPubMedPubMed Central Google Scholar
Pasaniuc, B. et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics30, 2906–2914 (2014). CASPubMedPubMed Central Google Scholar
Xu, Z. et al. DISSCO: direct imputation of summary statistics allowing covariates. Bioinformatics31, 2434–2442 (2015). CASPubMedPubMed Central Google Scholar
Lee, D. et al. DISTMIX: direct imputation of summary statistics for unmeasured SNPs from mixed ethnicity cohorts. Bioinformatics31, 3099–3104 (2015). CASPubMedPubMed Central Google Scholar
Park, D. S. et al. Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses. Bioinformatics31, i181–189 (2015). CASPubMedPubMed Central Google Scholar
Liu, J. Z. et al. A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet.87, 139–145 (2010). CASPubMedPubMed Central Google Scholar
Li, M.-X., Gui, H.-S., Kwan, J. S. H. & Sham, P. C. GATES: a rapid and powerful gene-based association test using extended Simes procedure. Am. J. Hum. Genet.88, 283–293 (2011). CASPubMedPubMed Central Google Scholar
Conneely, K. N. & Boehnke, M. So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests. Am. J. Hum. Genet.81, 1158–1168 (2007). CASPubMedPubMed Central Google Scholar
Hormozdiari, F., Kichaev, G., Yang, W.-Y., Pasaniuc, B. & Eskin, E. Identification of causal genes for complex traits. Bioinformatics31, i206–i213 (2015). CASPubMedPubMed Central Google Scholar
Berisa, T. & Pickrell, J. K. Approximately independent linkage disequilibrium blocks in human populations. Bioinformatics32, 283–285 (2016). CASPubMed Google Scholar
Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet.6, e1000888 (2010). PubMedPubMed Central Google Scholar
Nica, A. C. et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet.6, e1000895 (2010). PubMedPubMed Central Google Scholar
Xiong, Q., Ancona, N., Hauser, E. R., Mukherjee, S. & Furey, T. S. Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Genome Res.22, 386–397 (2012). CASPubMedPubMed Central Google Scholar
He, X. et al. Sherlock: detecting gene–disease associations by matching patterns of expression QTL and GWAS. Am. J. Hum. Genet.92, 667–680 (2013). CASPubMedPubMed Central Google Scholar
Huang, Y. T., Liang, L., Moffatt, M. F., Cookson, W. O. C. M. & Lin, X. iGWAS: integrative genome-wide association studies of genetic and genomic data for disease susceptibility using mediation analysis. Genet. Epidemiol.39, 347–356 (2015). PubMedPubMed Central Google Scholar
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet.10, e1004383 (2014). This study introduces a method for performing TWAS using summary statistics by assessing whether a single causal variant affects both gene expression and trait. PubMedPubMed Central Google Scholar
Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet.47, 381–386 (2015). CASPubMedPubMed Central Google Scholar
Fortune, M. D. et al. Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. Nat. Genet.47, 839–846 (2015). CASPubMedPubMed Central Google Scholar
Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet.47, 1091–1098 (2015). CASPubMedPubMed Central Google Scholar
Lee, D. et al. JEPEG: a summary statistics based tool for gene-level joint testing of functional variants. Bioinformatics31, 1176–1182 (2015). PubMed Google Scholar
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet.48, 245–252 (2016). This study identifies 69 new genes associated with obesity-related traits using a powerful new method for performing TWAS using summary statistics by assessing the association between predicted gene expression (using allcisSNPs) and trait. CASPubMedPubMed Central Google Scholar
Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet.48, 481–487 (2016). CASPubMed Google Scholar
Pavlides, J. M. W. et al. Predicting gene targets from integrative analyses of summary data from GWAS and eQTL studies for 28 human complex traits. Genome Med.8, 84 (2016). PubMedPubMed Central Google Scholar
Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet.13, 135–145 (2011). Google Scholar
Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA111, E455–E464 (2014). CASPubMed Google Scholar
Lee, S., Abecasis, G. R., Boehnke, M. & Lin, X. Rare-variant association analysis: study designs and statistical tests. Am. J. Hum. Genet.95, 5–23 (2014). CASPubMedPubMed Central Google Scholar
Lee, S., Teslovich, T. M., Boehnke, M. & Lin, X. General framework for meta-analysis of rare variants in sequencing association studies. Am. J. Hum. Genet.93, 42–53 (2013). This study is the first of three studies to demonstrate that rare variant burden and overdispersion tests can be performed using summary statistics. CASPubMedPubMed Central Google Scholar
Hu, Y.-J. et al. Meta-analysis of gene-level associations for rare variants based on single-variant statistics. Am. J. Hum. Genet.93, 236–248 (2013). CASPubMedPubMed Central Google Scholar
Liu, D. J. et al. Meta-analysis of gene-level tests for rare variant association. Nat. Genet.46, 200–204 (2014). CASPubMed Google Scholar
Faye, L. L., Machiela, M. J., Kraft, P., Bull, S. B. & Sun, L. Re-ranking sequencing variants in the post-GWAS era for accurate causal variant identification. PLoS Genet.9, e1003609 (2013). CASPubMedPubMed Central Google Scholar
Stephens, M. & Balding, D. J. Bayesian statistical methods for genetic association studies. Nat. Rev. Genet.10, 681–690 (2009). CASPubMed Google Scholar
Wellcome Trust Case Control Consortium et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet.44, 1294–1301 (2012). This study uses posterior probabilities of causality to construct credible sets of causal disease-associated SNPs across multiple loci and diseases under a single causal variant per locus assumption.
Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. Genetics198, 497–508 (2014). CASPubMedPubMed Central Google Scholar
Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet.10, e1004722 (2014). PubMedPubMed Central Google Scholar
Chen, W. et al. Fine mapping causal variants with an approximate bayesian method using marginal test statistics. Genetics200, 719–736 (2015). PubMedPubMed Central Google Scholar
Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics32, 1493–1501 (2016). CASPubMedPubMed Central Google Scholar
Newcombe, P. J., Conti, D. V. & Richardson, S. JAM: a scalable bayesian framework for joint analysis of marginal SNP effects. Genet. Epidemiol.40, 188–201 (2016). PubMedPubMed Central Google Scholar
Van de Bunt, M. et al. Evaluating the performance of fine-mapping strategies at common variant GWAS loci. PLoS Genet.11, e1005535 (2015). PubMedPubMed Central Google Scholar
Li, Y. & Kellis, M. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases. Nucleic Acids Res.44, e144 (2016). PubMedPubMed Central Google Scholar
Udler, M. S. et al. FGFR2 variants and breast cancer risk: fine-scale mapping using African American studies and analysis of chromatin conformation. Hum. Mol. Genet.18, 1692–1703 (2009). CASPubMedPubMed Central Google Scholar
Udler, M. S., Tyrer, J. & Easton, D. F. Evaluating the power to discriminate between highly correlated SNPs in genetic association studies. Genet. Epidemiol.34, 463–468 (2010). PubMed Google Scholar
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012).
Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature518, 317–330 (2015).
Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science337, 1190–1195 (2012). CASPubMedPubMed Central Google Scholar
Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet.45, 124–130 (2013). CASPubMed Google Scholar
Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet.94, 559–573 (2014). This study uses a Bayesian hierarchical model to estimate posterior probabilities of causality and to identify functional annotations enriched for disease heritability under a single causal variant per locus assumption. CASPubMedPubMed Central Google Scholar
Chung, D., Yang, C., Li, C., Gelernter, J. & Zhao, H. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet.10, e1004787 (2014). PubMedPubMed Central Google Scholar
Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet.97, 260–271 (2015). This study shows that fine-mapping accuracy can be improved by leveraging functional annotation data and trans-ethnic samples and modelling multiple causal variants per locus. CASPubMedPubMed Central Google Scholar
Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature518, 337–343 (2015). CASPubMed Google Scholar
Liu, C.-T. et al. Trans-ethnic meta-analysis and functional annotation illuminates the genetic architecture of fasting glucose and insulin. Am. J. Hum. Genet.99, 56–75 (2016). CASPubMedPubMed Central Google Scholar
Grubert, F. et al. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell162, 1051–1065 (2015). CASPubMedPubMed Central Google Scholar
Waszak, S. M. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell162, 1039–1050 (2015). CASPubMed Google Scholar
Zaitlen, N., Pasaniuc, B., Gur, T., Ziv, E. & Halperin, E. Leveraging genetic variability across populations for the identification of causal variants. Am. J. Hum. Genet.86, 23–33 (2010). CASPubMedPubMed Central Google Scholar
Morris, A. P. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol.35, 809–822 (2011). PubMedPubMed Central Google Scholar
Ong, R. T.-H., Wang, X., Liu, X. & Teo, Y. Y. Efficiency of trans-ethnic genome-wide meta-analysis and fine-mapping. Eur. J. Hum. Genet.20, 1300–1307 (2012). PubMed Google Scholar
Asimit, J. L., Hatzikotoulas, K., McCarthy, M., Morris, A. P. & Zeggini, E. Trans-ethnic study design approaches for fine-mapping. Eur. J. Hum. Genet.24, 1330–1336 (2016). PubMedPubMed Central Google Scholar
Kuo, J. Z. et al. Trans-ethnic fine mapping identifies a novel independent locus at the 3′ end of CDKAL1 and novel variants of several susceptibility loci for type 2 diabetes in a Han Chinese population. Diabetologia56, 2619–2628 (2013). CASPubMedPubMed Central Google Scholar
Chatterjee, N., Shi, J. & Garcia-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet.17, 392–406 (2016). CASPubMedPubMed Central Google Scholar
Chatterjee, N. et al. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat. Genet.45, 400–405 (2013). CASPubMedPubMed Central Google Scholar
International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature460, 748–752 (2009). This study uses polygenic risk scores to predict schizophrenia risk with appreciable accuracy, implicating a highly polygenic disease architecture.
Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet.44, 483–489 (2012). CASPubMedPubMed Central Google Scholar
Vilhjalmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet.97, 576–592 (2015). CASPubMedPubMed Central Google Scholar
Henderson, C. R. Best linear unbiased estimation and prediction under a selection model. Biometrics31, 423–447 (1975). CASPubMed Google Scholar
de los Campos, G., Gianola, D. & Allison, D. B. Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat. Rev. Genet.11, 880–886 (2010). CASPubMed Google Scholar
Speed, D. & Balding, D. J. MultiBLUP: improved SNP-based prediction for complex traits. Genome Res.24, 1550–1557 (2014). CASPubMedPubMed Central Google Scholar
Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet.9, e1003264 (2013). CASPubMedPubMed Central Google Scholar
Moser, G. et al. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet.11, e1004969 (2015). PubMedPubMed Central Google Scholar
Palla, L. & Dudbridge, F. A. Fast method that uses polygenic scores to estimate the variance explained by genome-wide marker panels and the proportion of variants affecting a trait. Am. J. Hum. Genet.97, 250–259 (2015). CASPubMedPubMed Central Google Scholar
Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet.47, 291–295 (2015). CASPubMedPubMed Central Google Scholar
Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet.19, 807–812 (2011). PubMedPubMed Central Google Scholar
Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet.42, 565–569 (2010). CASPubMedPubMed Central Google Scholar
Loh, P.-R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat. Genet.47, 1385–1392 (2015). CASPubMedPubMed Central Google Scholar
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet.47, 1228–1235 (2015). CASPubMedPubMed Central Google Scholar
Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet.43, 519–525 (2011). CASPubMedPubMed Central Google Scholar
Sivakumaran, S. et al. Abundant pleiotropy in human complex diseases and traits. Am. J. Hum. Genet.89, 607–618 (2011). CASPubMedPubMed Central Google Scholar
Styrkársdottir, U. et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature497, 517–520 (2013). PubMed Google Scholar
Denny, J. C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol.31, 1102–1110 (2013). CASPubMedPubMed Central Google Scholar
Stefansson, H. et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature505, 361–366 (2014). CASPubMed Google Scholar
Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet.48, 709–717 (2016). This study applies a Bayesian framework to identify pleiotropic effects across a broad set of complex traits and diseases. CASPubMedPubMed Central Google Scholar
Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet380, 572–580 (2012). CASPubMedPubMed Central Google Scholar
Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol.37, 658–665 (2013). PubMedPubMed Central Google Scholar
Burgess, S., Dudbridge, F. & Thompson, S. G. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat. Med.35, 1880–1906 (2016). PubMed Google Scholar
Lee, S. H. et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet.45, 984–994 (2013). CASPubMed Google Scholar
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet.47, 1236–1241 (2015). This study introduces a new method for estimating genome-wide genetic correlations from summary statistics. CASPubMedPubMed Central Google Scholar
Brown, B. C. et al. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet.99, 76–88 (2016). CASPubMedPubMed Central Google Scholar
Nieuwboer, H. A., Pool, R., Dolan, C. V., Boomsma, D. I. & Nivard, M. G. GWIS: genome-wide inferred statistics for functions of multiple phenotypes. Am. J. Hum. Genet.99, 917–927 (2016). CASPubMedPubMed Central Google Scholar
Hormozdiari, F. et al. Imputing phenotypes for genome-wide association studies. Am. J. Hum. Genet.99, 89–103 (2016). CASPubMedPubMed Central Google Scholar
[No authors listed.] Asking for more. Nat. Genet.44, 733 (2012).
Homer, N. et al. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet.4, e1000167 (2008). PubMedPubMed Central Google Scholar
Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet.46, 100–106 (2014). PubMedPubMed Central Google Scholar
Sankararaman, S., Obozinski, G., Jordan, M. I. & Halperin, E. Genomic privacy and limits of individual detection in a pool. Nat. Genet.41, 965–967 (2009). CASPubMed Google Scholar
Visscher, P. M. & Hill, W. G. The limits of individual identification from sample allele frequencies: theory and statistical analysis. PLoS Genet.5, e1000628 (2009). PubMedPubMed Central Google Scholar
Erlich, Y. & Narayanan, A. Routes for breaching and protecting genetic privacy. Nat. Rev. Genet.15, 409–421 (2014). CASPubMedPubMed Central Google Scholar
Madsen, B. E. & Browning, S. R. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet.5, e1000384 (2009). PubMedPubMed Central Google Scholar
Li, B. & Leal, S. M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet.83, 311–321 (2008). CASPubMedPubMed Central Google Scholar
Price, A. et al. Pooled association tests for rare variants in exon resequencing studies. 86, 832–838 (2010).
Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet.89, 82–93 (2011). CASPubMedPubMed Central Google Scholar
Daetwyler, H. D., Villanueva, B. & Woolliams, J. A. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PloS One3, e3395 (2008). PubMedPubMed Central Google Scholar
Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet.88, 294–305 (2011). PubMedPubMed Central Google Scholar
Perry, J. R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature514, 92–97 (2014). CASPubMedPubMed Central Google Scholar
Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet.45, 1452–1458 (2013). CASPubMedPubMed Central Google Scholar
Zheng, H. F. et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature526, 112–117 (2015). CASPubMedPubMed Central Google Scholar
Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet.42, 937–948 (2010). CASPubMedPubMed Central Google Scholar
Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet.43, 333–338 (2011). CASPubMedPubMed Central Google Scholar
Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature491, 119–124 (2012). CASPubMedPubMed Central Google Scholar
Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet.47, 979–986 (2015). CASPubMedPubMed Central Google Scholar
Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet.48, 624–633 (2016). CASPubMedPubMed Central Google Scholar
Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet.42, 441–447 (2010).
Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet.44, 659–669 (2012). CASPubMedPubMed Central Google Scholar
Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways. Diabetes59, 3229–3239 (2010). CASPubMedPubMed Central Google Scholar
Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature466, 707–713 (2010). CASPubMedPubMed Central Google Scholar
Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat. Genet.45, 1274–1283 (2013).
Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature467, 832–838 (2010). CASPubMedPubMed Central Google Scholar
Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature518, 187–196 (2015). CASPubMedPubMed Central Google Scholar
Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature506, 376–381 (2014). CASPubMed Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature511, 421–427 (2014).
Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet.44, 981–990 (2012). CASPubMedPubMed Central Google Scholar
Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformaticshttp://dx.doi.org/10.1093/bioinformatics/btw613 (2016).