Looking back to the embryo: defining transcriptional networks in adult myogenesis (original) (raw)
Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science279, 1528–1530 (1998). This seminal study documents the capacity for transplanted bone-marrow cells from transgenic mice to migrate to sites of muscle degeneration and differentiate into muscle. This report proposes the possibility that bone-marrow cells might be used as a source of myogenic progenitors to treat muscle disease. ArticleCASPubMed Google Scholar
La Barge, M. A. & Blau, H. M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell111, 589–601 (2002). This important work shows that transplanted bone-marrow cells can give rise to satellite cells after exercise-induced regeneration. This indicates that marrow-derived differentiation into non-hematopoeitic tissues might be mediated through a tissue-specific stem-cell intermediate, such as the muscle satellite cell. ArticleCAS Google Scholar
Summerbell, D. & Rigby, P. W. Transcriptional regulation during somitogenesis. Curr. Top. Dev. Biol.48, 301–318 (2000). ArticleCASPubMed Google Scholar
Pownall, M. E., Gustafsson, M. K. & Emerson, C. P. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu. Rev. Cell. Dev. Biol.18, 747–783 (2002). ArticleCASPubMed Google Scholar
Brent, A. E., Schweitzer, R. & Tabin, C. J. A somitic compartment of tendon progenitors. Cell113, 235–248 (2003). ArticleCASPubMed Google Scholar
Jostes, B., Walther, C. & Gruss, P. The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech. Dev.33, 27–37 (1990). ArticleCASPubMed Google Scholar
Goulding, M., Lumsden, A. & Paquette, A. J. Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development120, 957–971 (1994). ArticleCASPubMed Google Scholar
Kiefer, J. C. & Hauschka, S. D. Myf-5 is transiently expressed in nonmuscle mesoderm and exhibits dynamic regional changes within the presegmented mesoderm and somites I–IV. Dev. Biol.232, 77–90 (2001). ArticleCASPubMed Google Scholar
Hirsinger, E. et al. Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development128, 107–116 (2001). ArticleCASPubMed Google Scholar
Amthor, H., Christ, B. & Patel, K. A molecular mechanism enabling continuous embryonic muscle growth — a balance between proliferation and differentiation. Development126, 1041–1053 (1999). This paper proposes the hypothesis that embryonic myogenesis requires a temporal balance between proliferation and differentiation that is achieved through the presence of external cues, such as BMP and Shh signalling, and regulation of the expression ofPax3andMyoD. ArticleCASPubMed Google Scholar
Christ, B. & Ordahl, C. P. Early stages of chick somite development. Anat. Embryol.191, 381–396 (1995). ArticleCAS Google Scholar
Ordahl, C. P. & Le Douarin, N. M. Two myogenic lineages within the developing somite. Development114, 339–353 (1992). ArticleCASPubMed Google Scholar
Puri, P. L. & Sartorelli, V. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J. Cell. Physiol.185, 155–173 (2000). ArticleCASPubMed Google Scholar
Perry, R. L. & Rudnick, M. A. Molecular mechanisms regulating myogenic determination and differentiation. Front. Biosci.5, D750–D767 (2000). ArticleCASPubMed Google Scholar
Bergstrom, D. A. & Tapscott, S. J. Molecular distinction between specification and differentiation in the myogenic basic helix–loop–helix transcription factor family. Mol. Cell. Biol.21, 2404–2412 (2001). ArticleCASPubMedPubMed Central Google Scholar
Naya, F. J., Wu, C., Richardson, J. A., Overbeek, P. & Olson, E. N. Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development126, 2045–2052 (1999). ArticleCASPubMed Google Scholar
Naya, F. S. & Olson, E. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr. Opin. Cell. Biol.11, 683–688 (1999). ArticleCASPubMed Google Scholar
Naidu, P. S., Ludolph, D. C., To, R. Q., Hinterberger, T. J. & Konieczny, S. F. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Mol. Cell. Biol.15, 2707–2718 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ridgeway, A. G., Wilton, S. & Skerjanc, I. S. Myocyte enhancer factor 2C and myogenin up-regulate each other's expression and induce the development of skeletal muscle in P19 cells. J. Biol. Chem.275, 41–46 (2000). ArticleCASPubMed Google Scholar
Novitch, B. G., Mulligan, G. J., Jacks, T. & Lassar, A. B. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J. Cell. Biol.135, 441–456 (1996). ArticleCASPubMed Google Scholar
Novitch, B. G., Spicer, D. B., Kim, P. S., Cheung, W. L. & Lassar, A. B. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr. Biol.9, 449–459 (1999). ArticleCASPubMed Google Scholar
Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature418, 797–801 (2002). ArticleCASPubMed Google Scholar
Kablar, B. et al. Myogenic determination occurs independently in somites and limb buds. Dev. Biol.206, 219–231 (1999). ArticleCASPubMed Google Scholar
Tajbakhsh, S., Rocancourt, D. & Buckingham, M. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature384, 266–270 (1996). ArticleCASPubMed Google Scholar
Kablar, B. et al. MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development124, 4729–4738 (1997). ArticleCASPubMed Google Scholar
Ordahl, C. P. & Williams, B. A. Knowing chops from chuck: roasting myoD redundancy. Bioessays20, 357–362 (1998). ArticleCASPubMed Google Scholar
Hasty, P. et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature364, 501–506 (1993). ArticleCASPubMed Google Scholar
Nabeshima, Y. et al. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature364, 532–535 (1993). ArticleCASPubMed Google Scholar
Braun, T. & Arnold, H. H. Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J.14, 1176–1186 (1995). ArticleCASPubMedPubMed Central Google Scholar
Patapoutian, A. et al. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development121, 3347–3358 (1995). ArticleCASPubMed Google Scholar
Zhang, W., Behringer, R. R. & Olson, E. N. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev.9, 1388–1399 (1995). ArticleCASPubMed Google Scholar
Tajbakhsh, S. et al. Gene targeting the myf-5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle. Dev. Dyn.206, 291–300 (1996). ArticleCASPubMed Google Scholar
Carvajal, J. J., Cox, D., Summerbell, D. & Rigby, P. W. A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development. Development128, 1857–1868 (2001). ArticleCASPubMed Google Scholar
Hadchouel, J. et al. Modular long-range regulation of Myf5 reveals unexpected heterogeneity between skeletal muscles in the mouse embryo. Development127, 4455–4467 (2000). ArticleCASPubMed Google Scholar
Summerbell, D. et al. The expression of Myf5 in the developing mouse embryo is controlled by discrete and dispersed enhancers specific for particular populations of skeletal muscle precursors. Development127, 3745–3757 (2000). ArticleCASPubMed Google Scholar
Sporle, R., Gunther, T., Struwe, M. & Schughart, K. Severe defects in the formation of epaxial musculature in open brain (opb) mutant mouse embryos. Development122, 79–86 (1996). ArticleCASPubMed Google Scholar
Dietrich, S., Schubert, F. R., Gruss, P. & Lumsden, A. The role of the notochord for epaxial myotome formation in the mouse. Cell. Mol. Biol.45, 601–616 (1999). CASPubMed Google Scholar
Asakura, A. & Tapscott, S. J. Apoptosis of epaxial myotome in Danforth's short-tail (Sd) mice in somites that form following notochord degeneration. Dev. Biol.203, 276–289 (1998). ArticleCASPubMed Google Scholar
Borycki, A. G. et al. Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development126, 4053–4063 (1999). ArticleCASPubMed Google Scholar
Gustafsson, M. K. et al. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev.16, 114–126 (2002). This study is the first to provide a direct association between environmental cues that regulate myogenesis and the activation of a muscle-specification gene. Specifically, the authors show that long-range Shh signalling activatesMyf5through Gli1 binding sites in theMyf5epaxial somite enhancer. ArticleCASPubMedPubMed Central Google Scholar
Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature383, 407–413 (1996). ArticleCASPubMed Google Scholar
Kruger, M. et al. Sonic hedgehog is a survival factor for hypaxial muscles during mouse development. Development128, 743–752 (2001). ArticleCASPubMed Google Scholar
Duprez, D., Fournier-Thibault, C. & Le Douarin, N. Sonic Hedgehog induces proliferation of committed skeletal muscle cells in the chick limb. Development125, 495–505 (1998). ArticleCASPubMed Google Scholar
Pourquie, O., Coltey, M., Breant, C. & Le Douarin, N. M. Control of somite patterning by signals from the lateral plate. Proc. Natl Acad. Sci. USA92, 3219–3223 (1995). ArticleCASPubMedPubMed Central Google Scholar
Pourquie, O. et al. Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell84, 461–471 (1996). ArticleCASPubMed Google Scholar
Cossu, G. et al. Activation of different myogenic pathways: myf-5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm. Development122, 429–437 (1996). ArticleCASPubMed Google Scholar
Tajbakhsh, S. et al. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development125, 4155–4162 (1998). ArticleCASPubMed Google Scholar
Borello, U. et al. Transplacental delivery of the Wnt antagonist Frzb1 inhibits development of caudal paraxial mesoderm and skeletal myogenesis in mouse embryos. Development126, 4247–4255 (1999). ArticleCASPubMed Google Scholar
Amthor, H., Christ, B., Weil, M. & Patel, K. The importance of timing differentiation during limb muscle development. Curr. Biol.8, 642–652 (1998). ArticleCASPubMed Google Scholar
Dietrich, S., Schubert, F. R., Healy, C., Sharpe, P. T. & Lumsden, A. Specification of the hypaxial musculature. Development125, 2235–2249 (1998). ArticleCASPubMed Google Scholar
Hirsinger, E. et al. Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development124, 4605–4614 (1997). ArticleCASPubMed Google Scholar
Reshef, R., Maroto, M. & Lassar, A. B. Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev.12, 290–303 (1998). ArticleCASPubMedPubMed Central Google Scholar
McMahon, J. A. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev.12, 1438–1452 (1998). ArticleCASPubMedPubMed Central Google Scholar
Delfini, M., Hirsinger, E., Pourquie, O. & Duprez, D. δ1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development127, 5213–5224 (2000). ArticleCASPubMed Google Scholar
Houzelstein, D. et al. The homeobox gene Msx1 is expressed in a subset of somites, and in muscle progenitor cells migrating into the forelimb. Development126, 2689–2701 (1999). ArticleCASPubMed Google Scholar
Bendall, A. J., Ding, J., Hu, G., Shen, M. M. & Abate-Shen, C. Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors. Development126, 4965–4976 (1999). ArticleCASPubMed Google Scholar
Woloshin, P. et al. MSX1 inhibits myoD expression in fibroblast × 10T1/2 cell hybrids. Cell82, 611–620 (1995). ArticleCASPubMed Google Scholar
Odelberg, S. J., Kollhoff, A. & Keating, M. T. Dedifferentiation of mammalian myotubes induced by msx1. Cell103, 1099–1109 (2000). ArticleCASPubMed Google Scholar
Williams, B. A. & Ordahl, C. P. Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development120, 785–796 (1994). ArticleCASPubMed Google Scholar
Bober, E., Franz, T., Arnold, H. H., Gruss, P. & Tremblay, P. Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development120, 603–612 (1994). ArticleCASPubMed Google Scholar
Daston, G., Lamar, E., Olivier, M. & Goulding, M. Pax-3 is necessary for migration but not differentiation of limb muscle precursors in the mouse. Development122, 1017–1027 (1996). ArticleCASPubMed Google Scholar
Tremblay, P. et al. A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors. Dev. Biol.203, 49–61 (1998). ArticleCASPubMed Google Scholar
Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell102, 777–786 (2000). This work onPax7-deficient muscles shows that Pax7 is required for the development of the satellite-cell lineage, but not for embryonic and fetal muscle lineages. ArticleCASPubMed Google Scholar
Borycki, A. G., Li, J., Jin, F., Emerson, C. P. & Epstein, J. A. Pax3 functions in cell survival and in pax7 regulation. Development126, 1665–1674 (1999). ArticleCASPubMed Google Scholar
Tajbakhsh, S., Rocancourt, D., Cossu, G. & Buckingham, M. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell89, 127–138 (1997). This important article defines a hierarchical genetic relationship wherebyPax3andMyf5function upstream ofMyoDfor embryonic body-muscle development. ArticleCASPubMed Google Scholar
Maroto, M. et al. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell89, 139–48 (1997). ArticleCASPubMed Google Scholar
Ridgeway, A. G. & Skerjanc, I. S. Pax3 is essential for skeletal myogenesis and the expression of Six1 and Eya2. J. Biol. Chem.276, 19033–19039 (2001). ArticleCASPubMed Google Scholar
Magnaghi, P., Roberts, C., Lorain, S., Lipinski, M. & Scambler, P. J. HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3. Nature Genet.20, 74–77 (1998). ArticleCASPubMed Google Scholar
Lagutina, I., Conway, S. J., Sublett, J. & Grosveld, G. C. _Pax3_-FKHR knock-in mice show developmental aberrations but do not develop tumors. Mol. Cell. Biol.22, 7204–7216 (2002). ArticleCASPubMedPubMed Central Google Scholar
Khan, J. et al. cDNA microarrays detect activation of a myogenic transcription program by the _PAX3_-FKHR fusion oncogene. Proc. Natl Acad. Sci. USA96, 13264–13269 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ridgeway, A. G., Petropoulos, H., Wilton, S. & Skerjanc, I. S. Wnt signaling regulates the function of MyoD and myogenin. J. Biol. Chem.275, 32398–32405 (2000). ArticleCASPubMed Google Scholar
Petropoulos, H. & Skerjanc, I. S. β-catenin is essential and sufficient for skeletal myogenesis in p19 cells. J. Biol. Chem.277, 15393–15399 (2002). ArticleCASPubMed Google Scholar
Spitz, F. et al. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc. Natl Acad. Sci. USA95, 14220–14225 (1998). ArticleCASPubMedPubMed Central Google Scholar
Heanue, T. A. et al. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev.13, 3231–3243 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kardon, G., Heanue, T. A. & Tabin, C. J. Pax3 and Dach2 positive regulation in the developing somite. Dev. Dyn.224, 350–355 (2002). ArticleCASPubMed Google Scholar
Laclef, C. et al. Altered myogenesis in Six1-deficient mice. Development130, 2239–2252 (2003). ArticleCASPubMed Google Scholar
Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A. & Birchmeier, C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature376, 768–771 (1995). ArticleCASPubMed Google Scholar
Epstein, J. A., Shapiro, D. N., Cheng, J., Lam, P. Y. & Maas, R. L. Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc. Natl Acad. Sci. USA93, 4213–4218 (1996). ArticleCASPubMedPubMed Central Google Scholar
Mennerich, D., Schafer, K. & Braun, T. Pax-3 is necessary but not sufficient for lbx1 expression in myogenic precursor cells of the limb. Mech. Dev.73, 147–158 (1998). ArticleCASPubMed Google Scholar
Mennerich, D. & Braun, T. Activation of myogenesis by the homeobox gene Lbx1 requires cell proliferation. EMBO J.20, 7174–7183 (2001). ArticleCASPubMedPubMed Central Google Scholar
Brohmann, H., Jagla, K. & Birchmeier, C. The role of Lbx1 in migration of muscle precursor cells. Development127, 437–445 (2000). ArticleCASPubMed Google Scholar
Gross, M. K. et al. Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development127, 413–424 (2000). ArticleCASPubMed Google Scholar
Schafer, K. & Braun, T. Early specification of limb muscle precursor cells by the homeobox gene Lbx1h. Nature Genet.23, 213–216 (1999). ArticleCASPubMed Google Scholar
Schultz, E. Satellite cell proliferative compartments in growing skeletal muscles. Dev. Biol.175, 84–94 (1996). ArticleCASPubMed Google Scholar
Bischoff, R. in Myology (eds Engel, A. G. & Franzini-Armstrong, C.) 97–118 (McGraw Hill, New York, 1994). Google Scholar
Hawke, T. J. & Garry, D. J. Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol.91, 534–551 (2001). ArticleCASPubMed Google Scholar
Seale, P. & Rudnicki, M. A. in Stem Cells: A Cellular Fountain of Youth (eds Mattson, M. P. & Van Zant, G.) 177–200 (Elsevier, New York, 2002). Book Google Scholar
Armand, O., Boutineau, A. M., Mauger, A., Pautou, M. P. & Kieny, M. Origin of satellite cells in avian skeletal muscles. Arch. Anat. Microsc. Morphol. Exp.72, 163–181 (1983). CASPubMed Google Scholar
De Angelis, L. et al. Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J. Cell. Biol.147, 869–878 (1999). ArticleCASPubMedPubMed Central Google Scholar
Pardanaud, L. & Dieterlen-Lievre, F. Ontogeny of the endothelial system in the avian model. Adv. Exp. Med. Biol.476, 67–78 (2000). ArticleCASPubMed Google Scholar
Beauchamp, J. R. et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell. Biol.151, 1221–1234 (2000). ArticleCASPubMedPubMed Central Google Scholar
Smith, C. K., Janney, M. J. & Allen, R. E. Temporal expression of myogenic regulatory genes during activation, proliferation and differentiation of rat skeletal muscle satellite cells. J. Cell. Physiol.159, 379–385 (1994). ArticleCASPubMed Google Scholar
Cornelison, D. D. & Wold, B. J. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol.191, 270–283 (1997). ArticleCASPubMed Google Scholar
Seale, P. & Rudnicki, M. A. A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev. Biol.218, 115–124 (2000). ArticleCASPubMed Google Scholar
Megeney, L. A., Kablar, B., Garrett, K., Anderson, J. E. & Rudnicki, M. A. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev.10, 1173–1183 (1996). ArticleCASPubMed Google Scholar
Sabourin, L. A., Girgis-Gabardo, A., Seale, P., Asakura, A. & Rudnicki, M. A. Reduced differentiation potential of primary MyoD−/− myogenic cells derived from adult skeletal muscle. J. Cell. Biol.144, 631–643 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yablonka-Reuveni, Z. et al. The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev. Biol.210, 440–455 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cornelison, D. D., Olwin, B. B., Rudnicki, M. A. & Wold, B. J. MyoD(−/−) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev. Biol.224, 122–137 (2000). ArticleCASPubMed Google Scholar
Kaul, A., Koster, M., Neuhaus, H. & Braun, T. Myf-5 revisited: loss of early myotome formation does not lead to a rib phenotype in homozygous Myf-5 mutant mice. Cell102, 17–19 (2000). ArticleCASPubMed Google Scholar
Zhao, P. et al. Slug is a novel downstream target of MyoD. Temporal profiling in muscle regeneration. J. Biol. Chem.277, 30091–30101 (2002). ArticleCASPubMed Google Scholar
Montarras, D., Lindon, C., Pinset, C. & Domeyne, P. Cultured myf5 null and myoD null muscle precursor cells display distinct growth defects. Biol. Cell.92, 565–572 (2000). ArticleCASPubMed Google Scholar
Bergstrom, D. A. et al. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell.9, 587–600 (2002). This paper examines MyoD-specific gene expression and shows how MyoD regulates the expression of groups of genes in a manner that is dependent on promoter context. ArticleCASPubMed Google Scholar
Asakura, A., Komaki, M. & Rudnicki, M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation68, 245–253 (2001). ArticleCASPubMed Google Scholar
Wada, M. R., Inagawa-Ogashiwa, M., Shimizu, S., Yasumoto, S. & Hashimoto, N. Generation of different fates from multipotent muscle stem cells. Development129, 2987–2995 (2002). ArticleCASPubMed Google Scholar
Conboy, I. M. & Rando, T. A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell3, 397–409 (2002). ArticleCASPubMed Google Scholar
Shen, Q., Zhong, W., Jan, Y. N. & Temple, S. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development129, 4843–4853 (2002). ArticleCASPubMed Google Scholar
Rath, P. et al. Inscuteable-independent apicobasally oriented asymmetric divisions in the Drosophila embryonic CNS. EMBO Rep.3, 660–665 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dooley, C. M., James, J., Jane McGlade, C. & Ahmad, I. Involvement of numb in vertebrate retinal development: evidence for multiple roles of numb in neural differentiation and maturation. J. Neurobiol.54, 313–325 (2003). ArticleCASPubMed Google Scholar
Tatsumi, R., Anderson, J. E., Nevoret, C. J., Halevy, O. & Allen, R. E. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev. Biol.194, 114–128 (1998). ArticleCASPubMed Google Scholar
Allen, R. E., Sheehan, S. M., Taylor, R. G., Kendall, T. L. & Rice, G. M. Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J. Cell. Physiol.165, 307–312 (1995). ArticleCASPubMed Google Scholar
Anastasi, S. et al. A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. J. Cell. Biol.137, 1057–1068 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rudnicki, M. A. et al. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell75, 1351–1359 (1993). ArticleCASPubMed Google Scholar
Bittner, R. E. et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol.199, 391–396 (1999). ArticleCAS Google Scholar
Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature401, 390–394 (1999). CASPubMed Google Scholar
Wakeford, S., Watt, D. J. & Partridge, T. A. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve14, 42–50 (1991). ArticleCASPubMed Google Scholar
Pagel, C. N. & Partridge, T. A. Covert persistence of mdx mouse myopathy is revealed by acute and chronic effects of irradiation. J. Neurol. Sci.164, 103–116 (1999). ArticleCASPubMed Google Scholar
Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. & Mulligan, R. C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med.183, 1797–1806 (1996). ArticleCASPubMed Google Scholar
Goodell, M. A. et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Med.3, 1337–1345 (1997). ArticleCASPubMed Google Scholar
Asakura, A., Seale, P., Girgis-Gabardo, A. & Rudnicki, M. A. Myogenic specification of side population cells in skeletal muscle. J. Cell. Biol.159, 123–134 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. Y. et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J. Cell. Biol.150, 1085–1100 (2000). ArticleCASPubMedPubMed Central Google Scholar
Torrente, Y. et al. Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J. Cell. Biol.152, 335–348 (2001). ArticleCASPubMedPubMed Central Google Scholar
Baylies, M. K. & Michelson, A. M. Invertebrate myogenesis: looking back to the future of muscle development. Curr. Opin. Genet. Dev.11, 431–439 (2001). ArticleCASPubMed Google Scholar
Arbeitman, M. N. et al. Gene expression during the life cycle of Drosophila melanogaster. Science297, 2270–2275 (2002). ArticleCASPubMed Google Scholar
Semsarian, C. et al. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature400, 576–581 (1999). ArticleCASPubMed Google Scholar
Sakuma, K. et al. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropathol.105, 271–280 (2003). ArticleCASPubMed Google Scholar
Musaro, A., McCullagh, K. J., Naya, F. J., Olson, E. N. & Rosenthal, N. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature400, 581–585 (1999). ArticleCASPubMed Google Scholar
Musaro, A. et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genet.27, 195–200 (2001). ArticleCASPubMed Google Scholar
Friday, B. B. & Pavlath, G. K. A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J. Cell. Sci.114, 303–310 (2001). ArticleCASPubMed Google Scholar
Liu, D., Black, B. L. & Derynck, R. TGF-β inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev.15, 2950–2966 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cornelison, D. D., Filla, M. S., Stanley, H. M., Rapraeger, A. C. & Olwin, B. B. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev. Biol.239, 79–94 (2001). ArticleCASPubMed Google Scholar