Insulators: exploiting transcriptional and epigenetic mechanisms (original) (raw)
Bownes, M. Preferential insertion of P elements into genes expressed in the germ-line of Drosophila melanogaster. Mol. Gen. Genet.222, 457–460 (1990). ArticleCASPubMed Google Scholar
Geyer, P. K., Spana, C. & Corces, V. G. On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster. EMBO J.5, 2657–2662 (1986). ArticleCASPubMedPubMed Central Google Scholar
Pai, C. Y., Lei, E. P., Ghosh, D. & Corces, V. G. The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol. Cell16, 737–748 (2004). ArticleCASPubMed Google Scholar
Capelson, M. & Corces, V. G. The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol. Cell20, 105–116 (2005). ArticleCASPubMed Google Scholar
Gerasimova, T. I. & Corces, V. G. Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell92, 511–521 (1998). ArticleCASPubMed Google Scholar
Gerasimova, T. I., Byrd, K. & Corces, V. G. A chromatin insulator determines the nuclear localization of DNA. Mol. Cell6, 1025–1035 (2000). This article provides the first clear demonstration that an insertion of the Su(Hw)–gypsyenhancer-blocking element targets the chromatin fibre to insulator bodies. ArticleCASPubMed Google Scholar
Xu, Q., Li, M., Adams, J. & Cai, H. N. Nuclear location of a chromatin insulator in Drosophila melanogaster. J. Cell Sci.117, 1025–1032 (2004). ArticleCASPubMed Google Scholar
Kellum, R. & Schedl, P. A position-effect assay for boundaries of higher order chromosomal domains. Cell64, 941–950 (1991). ArticleCASPubMed Google Scholar
Kellum, R. & Schedl, P. A group of scs elements function as domain boundaries in an enhancer-blocking assay. Mol. Cell. Biol.12, 2424–2431 (1992). ArticleCASPubMedPubMed Central Google Scholar
Gaszner, M., Vazquez, J. & Schedl, P. The Zw5 protein, a component of the scs chromatin domain boundary, is able to block enhancer–promoter interaction. Genes Dev.13, 2098–2107 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zhao, K., Hart, C. M. & Laemmli, U. K. Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell81, 879–889 (1995). ArticleCASPubMed Google Scholar
Hart, C. M., Zhao, K. & Laemmli, U. K. The scs′ boundary element: characterization of boundary element-associated factors. Mol. Cell. Biol.17, 999–1009 (1997). ArticleCASPubMedPubMed Central Google Scholar
Blanton, J., Gaszner, M. & Schedl, P. Protein:protein interactions and the pairing of boundary elements in vivo. Genes Dev.17, 664–675 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chung, J. H., Whiteley, M. & Felsenfeld, G. A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell74, 505–514 (1993). ArticleCASPubMed Google Scholar
Pikaart, M. J., Recillas-Targa, F. & Felsenfeld, G. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev.12, 2852–2862 (1998). ArticleCASPubMedPubMed Central Google Scholar
Chung, J. H., Bell, A. C. & Felsenfeld, G. Characterization of the chicken β-globin insulator. Proc. Natl Acad. Sci. USA94, 575–580 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell98, 387–396 (1999). ArticleCASPubMed Google Scholar
Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature405, 482–485 (2000). References 20–22 shows that the imprinted expression of theIgf2/H19locus is controlled by DNA-methylation-regulated binding of the CTCF enhancer-blocking protein. ArticleCASPubMed Google Scholar
Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature405, 486–489 (2000). ArticleCASPubMed Google Scholar
Kanduri, C. et al. The 5′ flank of mouse H19 in an unusual chromatin conformation unidirectionally blocks enhancer–promoter communication. Curr. Biol.10, 449–457 (2000). ArticleCASPubMed Google Scholar
Farrell, C. M., West, A. G. & Felsenfeld, G. Conserved CTCF insulator elements flank the mouse and human β-globin loci. Mol. Cell. Biol.22, 3820–3831 (2002). ArticleCASPubMedPubMed Central Google Scholar
Filippova, G. N. et al. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nature Genet.28, 335–343 (2001). ArticleCASPubMed Google Scholar
Chao, W., Huynh, K. D., Spencer, R. J., Davidow, L. S. & Lee, J. T. CTCF, a candidate _trans_-acting factor for X-inactivation choice. Science295, 345–347 (2002). ArticleCASPubMed Google Scholar
Magdinier, F., Yusufzai, T. M. & Felsenfeld, G. Both CTCF-dependent and -independent insulators are found between the mouse T cell receptor α and Dad1 genes. J. Biol. Chem.279, 25381–25389 (2004). ArticleCASPubMed Google Scholar
Yusufzai, T. M., Tagami, H., Nakatani, Y. & Felsenfeld, G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell13, 291–298 (2004). The most comprehensive attempt at understanding the molecular mechanism of CTCF-mediated enhancer blocking. It concludes that models that are based on chromatin loop formation, which were originally developed on the basis of studies of Su(Hw) inDrosophila, might provide an explanation. ArticleCASPubMed Google Scholar
Courey, A. J., Plon, S. E. & Wang, J. C. The use of psoralen-modified DNA to probe the mechanism of enhancer action. Cell45, 567–574 (1986). ArticleCASPubMed Google Scholar
Plon, S. E. & Wang, J. C. Transcription of the human β-globin gene is stimulated by an SV40 enhancer to which it is physically linked but topologically uncoupled. Cell45, 575–580 (1986). ArticleCASPubMed Google Scholar
Liu, Y., Bondarenko, V., Ninfa, A. & Studitsky, V. M. DNA supercoiling allows enhancer action over a large distance. Proc. Natl Acad. Sci. USA98, 14883–14888 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bondarenko, V. A., Jiang, Y. I. & Studitsky, V. M. Rationally designed insulator-like elements can block enhancer action in vitro. EMBO J.22, 4728–4737 (2003). ArticleCASPubMedPubMed Central Google Scholar
Patrinos, G. P. et al. Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev.18, 1495–1509 (2004). ArticleCASPubMedPubMed Central Google Scholar
Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genet.36, 1065–1071 (2004). ArticleCASPubMed Google Scholar
Jackson, D. A., Iborra, F. J., Manders, E. M. & Cook, P. R. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol. Biol. Cell9, 1523–1536 (1998). ArticleCASPubMedPubMed Central Google Scholar
Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature435, 637–645 (2005). ArticleCASPubMed Google Scholar
Ling, J. Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science312, 269–272 (2006). This article demonstrates that CTCF protein is necessary to maintain interchromosomal interactions betweenIgf2/H19andWsb1/Nf1. ArticleCASPubMed Google Scholar
West, A. G. & Fraser, P. Remote control of gene transcription. Hum. Mol. Genet.14, R101–R111 (2005). ArticleCASPubMed Google Scholar
Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev.11, 2494–2509 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kong, S., Bohl, D., Li, C. & Tuan, D. Transcription of the HS2 enhancer toward a _cis_-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol. Cell. Biol.17, 3955–3965 (1997). ArticleCASPubMedPubMed Central Google Scholar
West, A. G., Gaszner, M. & Felsenfeld, G. Insulators: many functions, many mechanisms. Genes Dev.16, 271–288 (2002). ArticleCASPubMed Google Scholar
Morcillo, P., Rosen, C. & Dorsett, D. Genes regulating the remote wing margin enhancer in the Drosophila cut locus. Genetics144, 1143–1154 (1996). CASPubMedPubMed Central Google Scholar
Morcillo, P., Rosen, C., Baylies, M. K. & Dorsett, D. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev.11, 2729–2740 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zhao, H. & Dean, A. An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res.32, 4903–4919 (2004). ArticleCASPubMedPubMed Central Google Scholar
Scott, K. C., Taubman, A. D. & Geyer, P. K. Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. Genetics153, 787–798 (1999). CASPubMedPubMed Central Google Scholar
Cai, H. N. & Shen, P. Effects of cis arrangement of chromatin insulators on enhancer-blocking activity. Science291, 493–495 (2001). ArticleCASPubMed Google Scholar
Muravyova, E. et al. Loss of insulator activity by paired Su(Hw) chromatin insulators. Science291, 495–498 (2001). ArticleCASPubMed Google Scholar
Kuhn, E. J., Viering, M. M., Rhodes, K. M. & Geyer, P. K. A test of insulator interactions in Drosophila. EMBO J.22, 2463–2471 (2003). ArticleCASPubMedPubMed Central Google Scholar
Savitskaya, E. et al. Study of long-distance functional interactions between Su(Hw) insulators that can regulate enhancer–promoter communication in Drosophila melanogaster. Mol. Cell. Biol.26, 754–761 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yu, W. et al. Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nature Genet.36, 1105–1110 (2004). ArticleCASPubMed Google Scholar
Kuzmin, I. et al. Transcriptional regulator CTCF controls human interleukin 1 receptor-associated kinase 2 promoter. J. Mol. Biol.346, 411–422 (2005). ArticleCASPubMed Google Scholar
Filippova, G. N. et al. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol. Cell. Biol.16, 2802–2813 (1996). ArticleCASPubMedPubMed Central Google Scholar
Grewal, S. I. & Rice, J. C. Regulation of heterochromatin by histone methylation and small RNAs. Curr. Opin. Cell Biol.16, 230–238 (2004). ArticleCASPubMed Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). ArticleCASPubMed Google Scholar
Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science304, 1971–1976 (2004). ArticleCASPubMed Google Scholar
Rusche, L. N., Kirchmaier, A. L. & Rine, J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem.72, 481–516 (2003). ArticleCASPubMed Google Scholar
Oki, M., Valenzuela, L., Chiba, T., Ito, T. & Kamakaka, R. T. Barrier proteins remodel and modify chromatin to restrict silenced domains. Mol. Cell. Biol.24, 1956–1967 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bi, X., Yu, Q., Sandmeier, J. J. & Zou, Y. Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures. Mol. Cell. Biol.24, 2118–2131 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hebbes, T. R., Clayton, A. L., Thorne, A. W. & Crane-Robinson, C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J.13, 1823–1830 (1994). ArticleCASPubMedPubMed Central Google Scholar
Recillas-Targa, F. et al. Position-effect protection and enhancer blocking by the chicken β-globin insulator are separable activities. Proc. Natl Acad. Sci. USA99, 6883–6888 (2002). ArticleCASPubMedPubMed Central Google Scholar
Litt, M. D., Simpson, M., Recillas-Targa, F., Prioleau, M. N. & Felsenfeld, G. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J.20, 2224–2235 (2001). ArticleCASPubMedPubMed Central Google Scholar
Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science293, 2453–2455 (2001). ArticleCASPubMed Google Scholar
West, A. G., Huang, S., Gaszner, M., Litt, M. D. & Felsenfeld, G. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol. Cell16, 453–463 (2004). This article demonstrates that direct recruitment of histone acetylases and H3K4-specific histone methyltransferases is a necessary but not sufficient component of the cHS4 vertebrate barrier element. ArticleCASPubMed Google Scholar
Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell109, 551–562 (2002). ArticleCASPubMed Google Scholar
Ishii, K. & Laemmli, U. K. Structural and dynamic functions establish chromatin domains. Mol. Cell11, 237–248 (2003). ArticleCASPubMed Google Scholar
Casolari, J. M. et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell117, 427–439 (2004). ArticleCASPubMed Google Scholar
Roseman, R. R., Pirrotta, V. & Geyer, P. K. The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects. EMBO J.12, 435–442 (1993). ArticleCASPubMedPubMed Central Google Scholar
Ciavatta, D., Kalantry, S., Magnuson, T. & Smithies, O. A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proc. Natl Acad. Sci. USA103, 9958–9963 (2006). ArticleCASPubMedPubMed Central Google Scholar
Filippova, G. N. et al. Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev. Cell8, 31–42 (2005). ArticleCASPubMed Google Scholar
Cho, D. H. et al. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol. Cell20, 483–489 (2005). ArticleCASPubMed Google Scholar
Lieb, J. D., Liu, X., Botstein, D. & Brown, P. O. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association. Nature Genet.28, 327–334 (2001). ArticleCASPubMed Google Scholar
Donze, D., Adams, C. R., Rine, J. & Kamakaka, R. T. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev.13, 698–708 (1999). ArticleCASPubMedPubMed Central Google Scholar
Donze, D. & Kamakaka, R. T. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J.20, 520–531 (2001). ArticleCASPubMedPubMed Central Google Scholar
Oki, M. & Kamakaka, R. T. Barrier function at HMR. Mol. Cell19, 707–716 (2005). This paper describes the genetic dissection of the barrier element at the centromere-distal end ofHMRinS. cerevisiae. ArticleCASPubMed Google Scholar
Partridge, J. F., Borgstrom, B. & Allshire, R. C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev.14, 783–791 (2000). CASPubMedPubMed Central Google Scholar
Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet.37, 809–819 (2005). ArticleCASPubMed Google Scholar
Scott, K. C., Merrett, S. L. & Willard, H. F. A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr. Biol.16, 119–129 (2006). ArticleCASPubMed Google Scholar
Willoughby, D. A., Vilalta, A. & Oshima, R. G. An Alu element from the K18 gene confers position-independent expression in transgenic mice. J. Biol. Chem.275, 759–768 (2000). ArticleCASPubMed Google Scholar
Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. Cell125, 859–872 (2006). This paper provides an example of barrier activity achieved by targeting the chromatin fibre to a subnuclear compartment that is unfavourable for heterochromatin formation. ArticleCASPubMed Google Scholar
Wallrath, L. L. & Elgin, S. C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev.9, 1263–1277 (1995). ArticleCASPubMed Google Scholar
Sun, F. L. et al. The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc. Natl Acad. Sci. USA97, 5340–5345 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sun, F. L. et al. _cis_-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol. Cell. Biol.24, 8210–8220 (2004). This paper focuses on the chromatin organization of the fourth chromosome inDrosophilaand describes situations in which transition between heterochromatin and euchromatin is not regulated by barrier elements. ArticleCASPubMedPubMed Central Google Scholar
Kimura, A. & Horikoshi, M. Partition of distinct chromosomal regions: negotiable border and fixed border. Genes Cells9, 499–508 (2004). ArticleCASPubMed Google Scholar