The evolution of sex-biased genes and sex-biased gene expression (original) (raw)
Connallon, T. & Knowles, L. L. Intergenomic conflict revealed by patterns of sex-biased gene expression. Trends Genet.21, 495–499 (2005). ArticleCASPubMed Google Scholar
Rinn, J. L. & Snyder, M. Sexual dimorphism in mammalian gene expression. Trends Genet.21, 298–305 (2005). ArticleCASPubMed Google Scholar
Arnqvist, G. & Rowe, L. Sexual Conflict (Princeton Univ. Press, Princeton, 2005). Book Google Scholar
Rice, W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature381, 232–234 (1996). ArticleCASPubMed Google Scholar
Rice, W. R. Male fitness increases when females are eliminated from gene pool: implications for the Y chromosome. Proc. Natl Acad. Sci. USA95, 6217–6221 (1998). ArticleCASPubMedPubMed Central Google Scholar
Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. USA98, 1671–1675 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the D. melanogaster transcriptome. Science300, 1742–1744 (2003). The authors compare male and female gene expression between two closely relatedDrosophilaspecies, and find that the degree of sex bias often differs between species. ArticleCASPubMed Google Scholar
Parisi, M. et al. Paucity of genes on the D. melanogaster X chromosome showing male-biased expression. Science299, 697–700 (2003). Microarray experiments reveal that male-biased genes with both somatic and germline expression are under-represented on theD. melanogasterX chromosome. ArticleCASPubMedPubMed Central Google Scholar
Yang, X. et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res.16, 995–1004 (2006). This reference represents an unparalleled example of microarray-based analysis of sex-biased gene expression, using a large number of replicates. ArticleCASPubMedPubMed Central Google Scholar
Thoemle, K. et al. Genome-wide analysis of sex-enriched gene expression during C. elegans larval development. Dev. Biol.284, 500–508 (2005). ArticleCAS Google Scholar
Zhang, Z., Hambuch, T. M. & Parsch, J. Molecular evolution of sex-biased genes in Drosophila. Mol. Biol. Evol.21, 2130–2139 (2004). ArticleCASPubMed Google Scholar
Richards, S. et al. Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and _cis_-element evolution. Genome Res.15, 1–18 (2005). ArticleCASPubMedPubMed Central Google Scholar
Metta, M., Gudavalli, R., Gibert, J. M. & Schlötterer, C. No accelerated rate of protein evolution in male-biased Drosophila pseudoobscura genes. Genetics174, 411–420 (2006). ArticleCASPubMedPubMed Central Google Scholar
Reinke, V., Gil, I. S., Ward, S. & Kazmer, K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development131, 311–323 (2004). ArticleCASPubMed Google Scholar
Cutter, A. D. & Ward, S. Sexual and temporal dynamics of molecular evolution in C. elegans development. Mol. Biol. Evol.22, 178–188 (2005). ArticleCASPubMed Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25, 3389–3402 (1997). ArticleCASPubMedPubMed Central Google Scholar
Torgerson, D. G., Kulathinal, R. J. & Singh, R. S. Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes. Mol. Biol. Evol.19, 1973–1980 (2002). ArticleCASPubMed Google Scholar
Schultz, N., Hamra, F. K. & Garbers, D. L. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc. Natl Acad. Sci. USA100, 12201–12206 (2003). ArticleCASPubMedPubMed Central Google Scholar
Good, J. M. & Nachman, M. W. Rates of protein evolution are positively correlated with developmental timing of expression during mouse spermatogenesis. Mol. Biol. Evol.22, 1044–1052 (2005). ArticleCASPubMed Google Scholar
Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science309, 1850–1854 (2005). In a comparative genomic study of humans and chimpanzees, the authors find that testis-expressed genes have diverged rapidly in both protein sequence and expression level. ArticleCASPubMed Google Scholar
Zhang, Z. & Parsch, J. Positive correlation between evolutionary rate and recombination rate in Drosophila genes with male-biased expression. Mol. Biol. Evol.22, 1945–1947 (2005). ArticleCASPubMed Google Scholar
Pröschel, M., Zhang, Z. & Parsch, J. Widespread adaptive evolution of Drosophila genes with sex-biased expression. Genetics174, 893–900 (2006). DNA polymorphism and divergence data reveal that sex-biased genes undergo frequent adaptive evolution inDrosophilaspecies. ArticleCASPubMedPubMed Central Google Scholar
Sawyer, S. A., Parsch, J., Zhang, Z. & Hartl, D. L. Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proc. Natl Acad. Sci. USA104, 6504–6510 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dorus, S. et al. Genomic and functional evolution of the Drosophila melanogaster sperm proteome. Nature Genet.38, 1440–1445 (2006). ArticleCASPubMed Google Scholar
Swanson, W. J., Wong, A., Wolfner, M. F. & Aquadro, C. F. Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics168, 1457–1465 (2004). ArticleCASPubMedPubMed Central Google Scholar
Panhuis, T. M. & Swanson, W. J. Molecular evolution and population genetic analysis of candidate female reproductive genes in Drosophila. Genetics173, 2039–2047 (2006). ArticleCASPubMedPubMed Central Google Scholar
Swanson, W. J. & Vacquier, V. D. The rapid evolution of reproductive proteins. Nature Rev. Genet.3, 137–144 (2002). ArticleCASPubMed Google Scholar
Rice, W. R. & Holland, B. The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen. Behav. Ecol. Sociobiol.41, 1–10 (1997). Article Google Scholar
Gavrilets, S. Rapid evolution of reproductive barriers driven by sexual conflict. Nature403, 886–889 (2000). ArticleCASPubMed Google Scholar
Stepinska, U. & Bakst, M. R. in Reproductive Biology and Phylogeny of Birds (ed. Jamieson, B. G. M.) 553–587 (Science, Enfield, 2007). Google Scholar
Stewart, S. G. et al. Species specificity in avian sperm:perivitelline interaction. Comp. Biochem. Physiol. A Mol. Integr. Physiol.137, 657–663 (2004). ArticleCASPubMed Google Scholar
Berlin, S. & Smith, N. G. Testing for adaptive evolution of the female reproductive protein ZPC in mammals, birds and fishes reveals problems with the M7-M8 likelihood ratio test. BMC Evol. Biol.5, 65 (2005). ArticleCASPubMedPubMed Central Google Scholar
Voolstra, C., Tautz, D., Farbrother, P., Eichinger, L. & Harr, B. Contrasting evolution of expression differences in the testis between species and subspecies of the house mouse. Genome Res.17, 42–49 (2007). ArticleCASPubMedPubMed Central Google Scholar
Meiklejohn, C. D., Parsch, J., Ranz, J. M. & Hartl, D. L. Rapid evolution of male-biased gene expression in Drosophila. Proc. Natl Acad. Sci. USA100, 9894–9899 (2003). ArticleCASPubMedPubMed Central Google Scholar
Grantham, R., Gautier, C., Gouy, M., Jacobzone, M. & Mercier, R. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res.9, R43–R74 (1981). ArticleCASPubMedPubMed Central Google Scholar
Bennetzen, J. L. & Hall, B. D. Codon selection in yeast. J. Biol. Chem.257, 3026–3031 (1982). CASPubMed Google Scholar
Duret, L. & Mouchiroud, D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl Acad. Sci. USA96, 4482–4487 (1999). ArticleCASPubMedPubMed Central Google Scholar
Coghlan, A. & Wolfe, K. H. Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast16, 1131–1145 (2000). ArticleCASPubMed Google Scholar
Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol.151, 389–409 (1981). ArticleCASPubMed Google Scholar
Ikemura, T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J. Mol. Biol.158, 573–597 (1982). ArticleCASPubMed Google Scholar
Moriyama, E. N. & Powell, J. R. Codon usage bias and tRNA abundance in Drosophila. J. Mol. Evol.45, 514–523 (1997). ArticleCASPubMed Google Scholar
Duret, L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet.16, 287–289 (2000). ArticleCASPubMed Google Scholar
Hambuch, T. M. & Parsch, J. Patterns of synonymous codon usage in Drosophila melanogaster genes with sex-biased expression. Genetics170, 1691–1700 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution38, 735–742 (1984). ArticlePubMed Google Scholar
Charlesworth, B., Coyne, J. A. & Barton, N. H. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat.130, 113–146 (1987). References 46 and 47 represent seminal work on the theoretical expectations for the probability of fixation of sexually antagonistic mutations. Article Google Scholar
Reinke, V. et al. A global profile of germ line gene expression in C. elegans. Mol. Cell6, 605–616 (2000). One of the first large-scale studies of sex-biased gene expression. ArticleCASPubMed Google Scholar
Wang, P. J., McCarrey, J. R., Yang, F. & Page, D. C. An abundance of X-linked genes expressed in spermatogonia. Nature Genet.27, 422–426 (2001). ArticleCASPubMed Google Scholar
Khil, P. P., Smirnova, N. A., Romanienko, P. J. & Camerini-Otero, R. D. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nature Genet.36, 642–646 (2004). ArticleCASPubMed Google Scholar
Wu, C. I. & Xu, E. Y. Sexual antagonism and X inactivation — the SAXI hypothesis. Trends Genet.19, 243–247 (2003). ArticleCASPubMed Google Scholar
Saifi, G. M. & Chandra, H. S. An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc. Biol. Sci.266, 203–209 (1999). ArticleCASPubMedPubMed Central Google Scholar
Birchler, J. A., Riddle, N. C., Auger, D. L. & Veitia, R. A. Dosage balance in gene regulation: biological implications. Trends Genet.21, 219–226 (2005). ArticleCASPubMed Google Scholar
Marin, I., Siegal, M. L. & Baker, B. S. The evolution of dosage-compensation mechanisms. Bioessays22, 1106–1114 (2000). ArticleCASPubMed Google Scholar
Heard, E. & Disteche, C. M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev.20, 1848–1867 (2006). ArticleCASPubMed Google Scholar
Lucchesi, J. C., Kelly, W. G. & Panning, B. Chromatin remodeling in dosage compensation. Annu. Rev. Genet.39, 615–631 (2005). ArticleCASPubMed Google Scholar
Disteche, C. M., Filippova, G. N. & Tsuchiya, K. D. Escape from X inactivation. Cytogenet. Genome Res.99, 36–43 (2001). Article Google Scholar
Brown, C. J. & Greally, J. M. A stain upon the silence: genes escaping X inactivation. Trends Genet.19, 432–438 (2003). ArticleCASPubMed Google Scholar
Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature434, 400–404 (2005). This reference provides a detailed insight into the complexity of X-chromosome inactivation. ArticleCASPubMed Google Scholar
Jegalian, K. & Page, D. C. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature394, 776–780 (1998). ArticleCASPubMed Google Scholar
Birchler, J. A., Bhadra, U., Bhadra, M. P. & Auger, D. L. Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev. Biol.234, 275–288 (2001). ArticleCASPubMed Google Scholar
Handley, L. J., Ceplitis, H. & Ellegren, H. Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution. Genetics167, 367–376 (2004). ArticlePubMedPubMed Central Google Scholar
Kaiser, V. B. & Ellegren, H. Nonrandom distribution of genes with sex-biased expression in the chicken genome. Evolution60, 1945–1951 (2006). ArticleCASPubMed Google Scholar
Storchova, R. & Divina, P. Nonrandom representation of sex-biased genes on chicken Z chromosome. J. Mol. Evol.63, 676–681 (2006). ArticleCASPubMed Google Scholar
Gnad, F. & Parsch, J. Sebida: a database for the functional and evolutionary analysis of genes with sex-biased expression. Bioinformatics22, 2577–2579 (2006). ArticleCASPubMed Google Scholar
Waxman, D. & Peck, J. R. Pleiotropy and the preservation of perfection. Science279, 1210–1213 (1998). ArticleCASPubMed Google Scholar
Mank, J. E., Hultin-Rosenberg, L., Zwahlén, M. & Ellegren, H. Pleiotropic constraint hampers the resolution of sexual antagonism in vertebrate gene expression. Am. Nat., (in the press).
Otto, S. P. & Lenormand, T. Resolving the paradox of sex and recombination. Nature Rev. Genet.3, 252–261 (2002). A comprehensive review of the classical dilemma of why sexual reproduction is so much more common than asexual modes of reproduction. ArticleCASPubMed Google Scholar
Oshlack, A., Chabot, A. E., Smyth, G. K. & Gilad, Y. Using DNA microarrays to study gene expression in closely related species. Bioinformatics23, 1235–1242 (2007). ArticleCASPubMed Google Scholar
Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science270, 484–487 (1995). ArticleCASPubMed Google Scholar
Stolc, V. et al. A gene expression map for the euchromatic genome of Drosophila melanogaster. Science306, 655–660 (2004). ArticleCASPubMed Google Scholar
Parsch, J., Meiklejohn, C. D. & Hartl, D. L. in Selective Sweep (ed. Nurminsky, D.) 1–12 (Landes Bioscience, Georgetown, 2005). Book Google Scholar
Parsch, J., Meiklejohn, C. D., Hauschteck-Jungen, E., Hunziker, P. & Hartl, D. L. Molecular evolution of the ocnus and janus genes in the Drosophila melanogaster species subgroup. Mol. Biol. Evol.18, 801–811 (2001). ArticleCASPubMed Google Scholar
Loppin, B., Lepetit, D., Dorus, S., Couble, P. & Karr, T. L. Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability. Curr. Biol.15, 87–93 (2005). ArticleCASPubMed Google Scholar
Kalamegham, R., Sturgill, D., Siegfried, E. & Oliver, B. Drosophila mojoless, a retroposed GSK-3, has functionally diverged to acquire an essential role in male fertility. Mol. Biol. Evol.24, 732–742 (2007). ArticleCASPubMed Google Scholar
Betrán, E. & Long, M. Dntf-2r, a young Drosophila retroposed gene with specific male expression under positive Darwinian selection. Genetics164, 977–988 (2003). PubMedPubMed Central Google Scholar
Begun, D. J. & Lindfors, H. A. Rapid evolution of genomic Acp complement in the melanogaster subgroup of Drosophila. Mol. Biol. Evol.22, 2010–2021 (2005). ArticleCASPubMed Google Scholar
Begun, D. J., Lindfors, H. A., Thompson, M. E. & Holloway, A. K. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics172, 1675–1681 (2006). ArticleCASPubMedPubMed Central Google Scholar
Levine, M. T., Jones, C. D., Kern, A. D., Lindfors, H. A. & Begun, D. J. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc. Natl Acad. Sci. USA103, 9935–9939 (2006). ArticleCASPubMedPubMed Central Google Scholar
Begun, D. J., Lindfors, H. A., Kern, A. D. & Jones C. D. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics176, 1131–1137 (2007). ArticleCASPubMedPubMed Central Google Scholar