Small RNA sorting: matchmaking for Argonautes (original) (raw)
Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nature Rev. Genet.10, 94–108 (2009). CASPubMed Google Scholar
Chapman, E. J. & Carrington, J. C. Specialization and evolution of endogenous small RNA pathways. Nature Rev. Genet.8, 884–896 (2007). CASPubMed Google Scholar
Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell136, 669–687 (2009). CASPubMed Google Scholar
Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science313, 320–324 (2006). CASPubMed Google Scholar
Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell128, 1089–1103 (2007). ArticleCASPubMed Google Scholar
Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science315, 241–244 (2007). CASPubMed Google Scholar
Sijen, T., Steiner, F. A., Thijssen, K. L. & Plasterk, R. H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science315, 244–247 (2007). CASPubMed Google Scholar
Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell129, 69–82 (2007). CASPubMed Google Scholar
Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell127, 747–757 (2006). CASPubMed Google Scholar
Tolia, N. H. & Joshua-Tor, L. Slicer and the Argonautes. Nature Chem. Biol.3, 36–43 (2007). CAS Google Scholar
Hutvagner, G. & Simard, M. J. Argonaute proteins: key players in RNA silencing. Nature Rev. Mol. Cell Biol.9, 22–32 (2008). CAS Google Scholar
Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev.19, 2837–2848 (2005). CASPubMedPubMed Central Google Scholar
Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell123, 621–629 (2005). CASPubMed Google Scholar
Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell123, 607–620 (2005). References 12–14 described passenger strand cleavage and showed that Argonaute proteins themselves function in RISC maturation. CASPubMed Google Scholar
Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem.79, 351–379 (2010). CASPubMed Google Scholar
Brodersen, P. & Voinnet, O. Revisiting the principles of microRNA target recognition and mode of action. Nature Rev. Mol. Cell Biol.10, 141–148 (2009). CAS Google Scholar
Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res.14, 1902–1910 (2004). CASPubMedPubMed Central Google Scholar
Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10, 1957–1966 (2004). CASPubMedPubMed Central Google Scholar
Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature432, 231–235 (2004). CASPubMed Google Scholar
Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240 (2004). CASPubMed Google Scholar
Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol.14, 2162–2167 (2004). CASPubMed Google Scholar
Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell125, 887–901 (2006). CASPubMed Google Scholar
Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA10, 185–191 (2004). CASPubMedPubMed Central Google Scholar
Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science303, 95–98 (2004). CASPubMed Google Scholar
Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016 (2003). CASPubMedPubMed Central Google Scholar
Bussing, I., Yang, J. S., Lai, E. C. & Grosshans, H. The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila. EMBO J.29, 1830–1839 (2010). PubMedPubMed Central Google Scholar
Gruber, J. J. et al. Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell138, 328–339 (2009). CASPubMedPubMed Central Google Scholar
Sabin, L. R. et al. Ars2 regulates both miRNA- and siRNA-dependent silencing and suppresses RNA virus infection in Drosophila. Cell138, 340–351 (2009). CASPubMedPubMed Central Google Scholar
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001). This paper identified the ribonuclease Dicer as the dsRNA processing enzyme. CASPubMed Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001). CASPubMed Google Scholar
Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293, 834–838 (2001). CASPubMed Google Scholar
Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.15, 2654–2659 (2001). CASPubMedPubMed Central Google Scholar
Haase, A. D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep.6, 961–967 (2005). CASPubMedPubMed Central Google Scholar
Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature436, 740–744 (2005). CASPubMedPubMed Central Google Scholar
Saito, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Processing of pre-microRNAs by the Dicer-1–Loquacious complex in Drosophila cells. PLoS Biol.3, e235 (2005). PubMedPubMed Central Google Scholar
Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol.3, e236 (2005). PubMedPubMed Central Google Scholar
Park, J. K., Liu, X., Strauss, T. J., McKearin, D. M. & Liu, Q. The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells. Curr. Biol.17, 533–538 (2007). CASPubMed Google Scholar
Zhou, R. et al. Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform. RNA15, 1886–1895 (2009). CASPubMedPubMed Central Google Scholar
Berezikov, E., Chung, W. J., Willis, J., Cuppen, E. & Lai, E. C. Mammalian mirtron genes. Mol. Cell28, 328–336 (2007). CASPubMedPubMed Central Google Scholar
Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell130, 89–100 (2007). CASPubMedPubMed Central Google Scholar
Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature448, 83–86 (2007). CASPubMedPubMed Central Google Scholar
Flynt, A. S., Greimann, J. C., Chung, W. J., Lima, C. D. & Lai, E. C. MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol. Cell38, 900–907 (2010). CASPubMedPubMed Central Google Scholar
Yu, B. et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc. Natl Acad. Sci. USA105, 10073–10078 (2008). CASPubMedPubMed Central Google Scholar
Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev.16, 1616–1626 (2002). CASPubMedPubMed Central Google Scholar
Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol.12, 1484–1495 (2002). CASPubMedPubMed Central Google Scholar
Henderson, I. R. et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genet.38, 721–725 (2006). CASPubMed Google Scholar
Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl Acad. Sci. USA101, 12753–12758 (2004). CASPubMedPubMed Central Google Scholar
Han, M. H., Goud, S., Song, L. & Fedoroff, N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc. Natl Acad. Sci. USA101, 1093–1098 (2004). CASPubMedPubMed Central Google Scholar
Kurihara, Y., Takashi, Y. & Watanabe, Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA12, 206–212 (2006). CASPubMedPubMed Central Google Scholar
Vazquez, F., Gasciolli, V., Crete, P. & Vaucheret, H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol.14, 346–351 (2004). CASPubMed Google Scholar
Dong, Z., Han, M. H. & Fedoroff, N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc. Natl Acad. Sci. USA105, 9970–9975 (2008). CASPubMedPubMed Central Google Scholar
Lobbes, D., Rallapalli, G., Schmidt, D. D., Martin, C. & Clarke, J. SERRATE: a new player on the plant microRNA scene. EMBO Rep.7, 1052–1058 (2006). CASPubMedPubMed Central Google Scholar
Yang, L., Liu, Z., Lu, F., Dong, A. & Huang, H. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J.47, 841–850 (2006). CASPubMed Google Scholar
Laubinger, S. et al. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA105, 8795–8800 (2008). CASPubMedPubMed Central Google Scholar
Gregory, B. D. et al. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev. Cell14, 854–866 (2008). CASPubMed Google Scholar
Li, J., Yang, Z., Yu, B., Liu, J. & Chen, X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol.15, 1501–1507 (2005). CASPubMedPubMed Central Google Scholar
Yang, Z., Ebright, Y. W., Yu, B. & Chen, X. HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res.34, 667–675 (2006). CASPubMedPubMed Central Google Scholar
Ramachandran, V. & Chen, X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science321, 1490–1492 (2008). CASPubMedPubMed Central Google Scholar
Ameres, S. L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science328, 1534–1539 (2010). CASPubMedPubMed Central Google Scholar
Park, M. Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H. & Poethig, R. S. Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl Acad. Sci. USA 102, 3691–3696 (2005). CASPubMedPubMed Central Google Scholar
Eamens, A. L., Smith, N. A., Curtin, S. J., Wang, M. B. & Waterhouse, P. M. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA15, 2219–2235 (2009). CASPubMedPubMed Central Google Scholar
Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science286, 950–952 (1999). This seminal report was the first to link small RNAs to post-transcriptional gene silencing. CASPubMed Google Scholar
Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell117, 69–81 (2004). CASPubMed Google Scholar
Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science301, 1921–1925 (2003). CASPubMed Google Scholar
Hartig, J. V., Esslinger, S., Bottcher, R., Saito, K. & Forstemann, K. Endo-siRNAs depend on a new isoform of Loquacious and target artificially introduced, high-copy sequences. EMBO J.28, 2932–2944 (2009). CASPubMedPubMed Central Google Scholar
Miyoshi, K., Miyoshi, T., Hartig, J. V., Siomi, H. & Siomi, M. C. Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. RNA16, 506–515 (2010). PubMedPubMed Central Google Scholar
Marques, J. T. et al. Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nature Struct. Mol. Biol.17, 24–30 (2010). CAS Google Scholar
Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science320, 1077–1081 (2008). CASPubMedPubMed Central Google Scholar
Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature453, 803–806 (2008). CASPubMedPubMed Central Google Scholar
Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature453, 793–797 (2008). CASPubMed Google Scholar
Chung, W. J., Okamura, K., Martin, R. & Lai, E. C. Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr. Biol.18, 795–802 (2008). CASPubMedPubMed Central Google Scholar
Lipardi, C. & Paterson, B. M. Identification of an RNA-dependent RNA polymerase in Drosophila involved in RNAi and transposon suppression. Proc. Natl Acad. Sci. USA106, 15645–15650 (2009). CASPubMedPubMed Central Google Scholar
Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature453, 534–538 (2008). CASPubMedPubMed Central Google Scholar
Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature453, 539–543 (2008). CASPubMed Google Scholar
Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev.22, 2773–2785 (2008). CASPubMedPubMed Central Google Scholar
Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science293, 2269–2271 (2001). CASPubMedPubMed Central Google Scholar
Steiner, F. A., Okihara, K. L., Hoogstrate, S. W., Sijen, T. & Ketting, R. F. RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans. Nature Struct. Mol. Biol.16, 207–211 (2009). CAS Google Scholar
Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell16, 69–79 (2004). CASPubMed Google Scholar
Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L. & Poethig, R. S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of _trans_-acting siRNAs in Arabidopsis. Genes Dev.18, 2368–2379 (2004). CASPubMedPubMed Central Google Scholar
Yoshikawa, M., Peragine, A., Park, M. Y. & Poethig, R. S. A pathway for the biogenesis of _trans_-acting siRNAs in Arabidopsis. Genes Dev.19, 2164–2175 (2005). CASPubMedPubMed Central Google Scholar
Williams, L., Carles, C. C., Osmont, K. S. & Fletcher, J. C. A database analysis method identifies an endogenous _trans_-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc. Natl Acad. Sci. USA102, 9703–9708 (2005). CASPubMedPubMed Central Google Scholar
Allen, E., Xie, Z., Gustafson, A. M. & Carrington, J. C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell121, 207–221 (2005). CASPubMed Google Scholar
Axtell, M. J., Jan, C., Rajagopalan, R. & Bartel, D. P. A two-hit trigger for siRNA biogenesis in plants. Cell127, 565–577 (2006). CASPubMed Google Scholar
Montgomery, T. A. et al. Specificity of ARGONAUTE7–miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell133, 128–141 (2008). CASPubMed Google Scholar
Hernandez-Pinzon, I. et al. SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of _trans_-acting endogenous siRNA. Plant J.50, 140–148 (2007). CASPubMed Google Scholar
Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R. & Zhu, J. K. Endogenous siRNAs derived from a pair of natural _cis_-antisense transcripts regulate salt tolerance in Arabidopsis. Cell123, 1279–1291 (2005). CASPubMedPubMed Central Google Scholar
Katiyar-Agarwal, S. et al. A pathogen-inducible endogenous siRNA in plant immunity. Proc. Natl Acad. Sci. USA103, 18002–18007 (2006). CASPubMedPubMed Central Google Scholar
Henz, S. R. et al. Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol.144, 1247–1255 (2007). CASPubMedPubMed Central Google Scholar
Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol.2, e104 (2004). PubMedPubMed Central Google Scholar
Chan, S. W. et al. RNA silencing genes control de novo DNA methylation. Science303, 1336 (2004). CASPubMed Google Scholar
Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell120, 613–622 (2005). CASPubMed Google Scholar
Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. Science308, 118–120 (2005). CASPubMed Google Scholar
Pontier, D. et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev.19, 2030–2040 (2005). CASPubMedPubMed Central Google Scholar
Kasschau, K. D. et al. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol.5, e57 (2007). PubMedPubMed Central Google Scholar
Smith, L. M. et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell19, 1507–1521 (2007). CASPubMedPubMed Central Google Scholar
Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell123, 631–640 (2005). CASPubMed Google Scholar
Maniataki, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev.19, 2979–2990 (2005). CASPubMedPubMed Central Google Scholar
Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216 (2003). CASPubMed Google Scholar
Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). References 104 and 105 identified intrinsic determinants in small RNA duplexes that affect their sorting into Argonaute complexes. CASPubMed Google Scholar
Ghildiyal, M., Xu, J., Seitz, H., Weng, Z. & Zamore, P. D. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA16, 43–56 (2010). CASPubMedPubMed Central Google Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862 (2001). CASPubMed Google Scholar
Hu, H. Y. et al. Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics10, 413 (2009). PubMedPubMed Central Google Scholar
Okamura, K., Liu, N. & Lai, E. C. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol. Cell36, 431–444 (2009). CASPubMedPubMed Central Google Scholar
Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature465, 818–822 (2010). This recent study found structural evidence in Argonaute proteins that explains 5′ terminal nucleotide biases. CASPubMed Google Scholar
Mi, S. et al. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell133, 116–127 (2008). Together with reference 90, this paper described the identification of 5′ terminal nucleotides as sorting determinants in plants. CASPubMedPubMed Central Google Scholar
Forstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1. Cell130, 287–297 (2007). PubMedPubMed Central Google Scholar
Ameres, S. L., Hung, J.-H., Xu, J., Weng, Z. & Zamore, P. D. Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. RNA (in the press).
Steiner, F. A. et al. Structural features of small RNA precursors determine Argonaute loading in Caenorhabditis elegans. Nature Struct. Mol. Biol.14, 927–933 (2007). CAS Google Scholar
Jannot, G., Boisvert, M. E., Banville, I. H. & Simard, M. J. Two molecular features contribute to the Argonaute specificity for the microRNA and RNAi pathways in C. elegans. RNA14, 829–835 (2008). CASPubMedPubMed Central Google Scholar
Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell15, 185–197 (2004). CASPubMed Google Scholar
Yoda, M. et al. ATP-dependent human RISC assembly pathways. Nature Struct. Mol. Biol.17, 17–23 (2010). CAS Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004). CASPubMed Google Scholar
Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M. & Watanabe, Y. The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins. Plant Cell Physiol.49, 493–500 (2008). CASPubMed Google Scholar
Yang, J. S. et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl Acad. Sci. USA107, 15163–15168 (2010). CASPubMedPubMed Central Google Scholar
Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature465, 584–589 (2010). CASPubMedPubMed Central Google Scholar
Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science328, 1694–1698 (2010). CASPubMedPubMed Central Google Scholar
Diederichs, S. & Haber, D. A. Dual role for Argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell131, 1097–1108 (2007). CASPubMed Google Scholar
Tan, G. S. et al. Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res.37, 7533–7545 (2009). CASPubMedPubMed Central Google Scholar
Das, P. P. et al. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell31, 79–90 (2008). CASPubMedPubMed Central Google Scholar
Batista, P. J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell31, 67–78 (2008). CASPubMedPubMed Central Google Scholar
Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell107, 309–321 (2001). CASPubMed Google Scholar
Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell116, 831–841 (2004). CASPubMed Google Scholar
Pham, J. W., Pellino, J. L., Lee, Y. S., Carthew, R. W. & Sontheimer, E. J. A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell117, 83–94 (2004). CASPubMed Google Scholar
Kawamata, T., Seitz, H. & Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nature Struct. Mol. Biol.16, 953–960 (2009). CAS Google Scholar
Johnston, M., Geoffroy, M. C., Sobala, A., Hay, R. & Hutvagner, G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol. Biol. Cell21, 1462–1469 (2010). CASPubMedPubMed Central Google Scholar
Iki, T. et al. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol. Cell39, 282–291 (2010). CASPubMed Google Scholar
Iwasaki, S. et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell39, 292–299 (2010). CASPubMed Google Scholar
Miyoshi, T., Takeuchi, A., Siomi, H. & Siomi, M. C. A direct role for Hsp90 in pre-RISC formation in Drosophila. Nature Struct. Mol. Biol.17, 1024–1026 (2010). CAS Google Scholar
Tomari, Y., Du, T. & Zamore, P. D. Sorting of Drosophila small silencing RNAs. Cell130, 299–308 (2007). References 113, 118, 132 and 137 made important contributions to understanding small RNA sorting and showed that miRNA maturation is independent of cleavage activity. CASPubMedPubMed Central Google Scholar
Liu, X., Jiang, F., Kalidas, S., Smith, D. & Liu, Q. Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA12, 1514–1520 (2006). CASPubMedPubMed Central Google Scholar
Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P. D. A protein sensor for siRNA asymmetry. Science306, 1377–1380 (2004). CASPubMed Google Scholar
Liu, Y. et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science325, 750–753 (2009). CASPubMedPubMed Central Google Scholar
Miyoshi, K., Okada, T. N., Siomi, H. & Siomi, M. C. Characterization of the miRNA–RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA15, 1282–1291 (2009). CASPubMedPubMed Central Google Scholar
Horwich, M. D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol.17, 1265–1272 (2007). CASPubMed Google Scholar
Saito, K., Sakaguchi, Y., Suzuki, T., Siomi, H. & Siomi, M. C. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev.21, 1603–1608 (2007). CASPubMedPubMed Central Google Scholar
Davis, E. et al. RNAi-mediated allelic _trans_-interaction at the imprinted Rtl1/Peg11 locus. Curr. Biol.15, 743–749 (2005). CASPubMed Google Scholar
Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596 (2004). CASPubMed Google Scholar
Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell110, 513–520 (2002). CASPubMed Google Scholar
Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science320, 1185–1190 (2008). CASPubMed Google Scholar
Wierzbicki, A. T., Ream, T. S., Haag, J. R. & Pikaard, C. S. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nature Genet.41, 630–634 (2009). CASPubMed Google Scholar
Matzke, M., Kanno, T., Daxinger, L., Huettel, B. & Matzke, A. J. RNA-mediated chromatin-based silencing in plants. Curr. Opin. Cell Biol.21, 367–376 (2009). CASPubMed Google Scholar
Chan, S. W., Henderson, I. R. & Jacobsen, S. E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Rev. Genet.6, 351–360 (2005). CASPubMed Google Scholar
Mosher, R. A., Schwach, F., Studholme, D. & Baulcombe, D. C. PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proc. Natl Acad. Sci. USA105, 3145–3150 (2008). CASPubMedPubMed Central Google Scholar
Yin, H. & Lin, H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature450, 304–308 (2007). CASPubMed Google Scholar
Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell12, 503–514 (2007). CASPubMed Google Scholar
Aravin, A. A. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell31, 785–799 (2008). CASPubMedPubMed Central Google Scholar
Guang, S. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature465, 1097–1101 (2010). CASPubMedPubMed Central Google Scholar
Werner, S., Wollmann, H., Schneeberger, K. & Weigel, D. Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr. Biol.20, 42–48 (2010). CASPubMed Google Scholar
Mateos, J. L., Bologna, N. G., Chorostecki, U. & Palatnik, J. F. Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr. Biol.20, 49–54 (2010). CASPubMed Google Scholar
Song, L., Axtell, M. J. & Fedoroff, N. V. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr. Biol.20, 37–41 (2010). CASPubMed Google Scholar
Cuperus, J. T. et al. Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc. Natl Acad. Sci. USA107, 466–471 (2010). CASPubMed Google Scholar
Bologna, N. G., Mateos, J. L., Bresso, E. G. & Palatnik, J. F. A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J.28, 3646–3656 (2009). CASPubMedPubMed Central Google Scholar
Wang, Y. et al. Structure of an Argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature456, 921–926 (2008). CASPubMedPubMed Central Google Scholar
Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Struct. Biol.10, 1026–1032 (2003). CASPubMed Google Scholar
Ma, J. B., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature429, 318–322 (2004). CASPubMedPubMed Central Google Scholar
Ma, J. B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature434, 666–670 (2005). CASPubMedPubMed Central Google Scholar
Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex. Nature434, 663–666 (2005). CASPubMedPubMed Central Google Scholar
Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing Argonaute silencing complex. Nature456, 209–213 (2008). CASPubMedPubMed Central Google Scholar
Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature461, 754–761 (2009). CASPubMedPubMed Central Google Scholar
Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science305, 1434–1437 (2004). CASPubMed Google Scholar
Parker, J. S., Roe, S. M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J.23, 4727–4737 (2004). CASPubMedPubMed Central Google Scholar
Yuan, Y. R. et al. Crystal structure of A. aeolicus Argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell19, 405–419 (2005). CASPubMedPubMed Central Google Scholar
Schwarz, D. S., Tomari, Y. & Zamore, P. D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr. Biol.14, 787–791 (2004). CASPubMed Google Scholar
Martinez, J. & Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev.18, 975–980 (2004). CASPubMedPubMed Central Google Scholar
Iwasaki, S., Kawamata, T. & Tomari, Y. Drosophila Argonaute1 and Argonaute2 employ distinct mechanisms for translational repression. Mol. Cell34, 58–67 (2009). CASPubMed Google Scholar
Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature466, 835–840 (2010). CASPubMedPubMed Central Google Scholar