Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nature Rev. Genet.11, 597–610 (2010). ArticleCASPubMed Google Scholar
Wu, L. & Belasco, J. G. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol. Cell29, 1–7 (2008). ArticlePubMedCAS Google Scholar
Eulalio, A., Huntzinger, E. & Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell132, 9–14 (2008). ArticleCASPubMed Google Scholar
Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet.9, 102–114 (2008). ArticleCASPubMed Google Scholar
Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature455, 58–63 (2008). ArticleCASPubMed Google Scholar
Hendrickson, D. G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol.7, e1000238 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature466, 835–840 (2010). References 8–11 report the first studies aimed at determining the contribution of translational repression and mRNA degradation to the overall effect of animal miRNAs on a genome-wide level. ArticleCASPubMedPubMed Central Google Scholar
Derry, M. C., Yanagiya, A., Martineau, Y. & Sonenberg, N. Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb. Symp. Quant. Biol.71, 537–543 (2006). ArticleCASPubMed Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). ArticleCASPubMed Google Scholar
Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol.243, 215–225 (2002). References 13 and 14 are classic papers that represent the first investigations of the mechanisms of miRNA-mediated gene silencing inC. elegans. ArticleCASPubMed Google Scholar
Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nature Struct. Mol. Biol.13, 1102–1107 (2006). ArticleCAS Google Scholar
Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol.13, 1108–1114 (2006). ArticleCAS Google Scholar
Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell21, 533–542 (2006). ArticleCASPubMed Google Scholar
Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science309, 1573–1576 (2005). ArticleCASPubMed Google Scholar
Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl Acad. Sci. USA102, 16961–16966 (2005). References 18 and 19 were the first to report that miRNAs inhibit translation initiation. ArticleCASPubMedPubMed Central Google Scholar
Wang, B., Love, T. M., Call, M. E., Doench, J. G. & Novina, C. D. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol. Cell22, 553–560 (2006). ArticleCASPubMed Google Scholar
Thermann, R. & Hentze, M. W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature447, 875–878 (2007). ArticleCASPubMed Google Scholar
Iwasaki, S., Kawamata, T. & Tomari, Y. Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. Mol. Cell34, 58–67 (2009). ArticleCASPubMed Google Scholar
Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science17, 1764–1767 (2007). ArticleCAS Google Scholar
Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev.21, 1857–1862 (2007). References 20–24 describe the first cell-free extracts that recapitulate miRNA-mediated gene silencingin vitro. ArticleCASPubMedPubMed Central Google Scholar
Zdanowicz, A. et al. Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol. Cell35, 881–888 (2009). ArticleCASPubMed Google Scholar
Ding, X. C. & Grosshans, H. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J.28, 213–222 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–773 (2005). ArticleCASPubMed Google Scholar
Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature438, 685–689 (2005). ArticlePubMedCAS Google Scholar
Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell122, 553–563 (2005). ArticleCASPubMed Google Scholar
Wu, L. & Belasco, J. G. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol. Cell. Biol.25, 9198–9208 (2005). References 27–30 represent the first studies showing that animal miRNAs trigger target degradation. ArticleCASPubMedPubMed Central Google Scholar
Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA11, 1640–1647 (2005). The first study to show that decapping factors are involved in miRNA-mediated regulation. ArticleCASPubMedPubMed Central Google Scholar
Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell. Biol.26, 2965–2975 (2006). ArticleCASPubMedPubMed Central Google Scholar
Schmitter, D. et al. Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res.34, 4801–4815 (2006). ArticleCASPubMedPubMed Central Google Scholar
Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev.20, 1885–1898 (2006). First study showing that the CCR4–CAF1–NOT complex is involved in miRNA-mediated silencing in animal cells. Together with references 35 and 36, this study showed for the first time that miRNAs trigger deadenylation. ArticleCASPubMedPubMed Central Google Scholar
Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science312, 75–79 (2006). ArticleCASPubMed Google Scholar
Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev.21, 2558–2570 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mishima, Y. et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol.16, 2135–2142 (2006). ArticleCASPubMedPubMed Central Google Scholar
Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell123, 1133–1146 (2005). ArticleCASPubMed Google Scholar
Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science310, 1817–1821 (2005). ArticleCASPubMed Google Scholar
Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596 (2004). ArticleCASPubMed Google Scholar
Piao, X., Zhang, X., Wu, L. & Belasco, J. G. CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol. Cell. Biol.30, 1486–1494 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chu, C. Y. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol.4, e210 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Fabian, M. R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell35, 868–880 (2009). This study, together with reference 64, showed that GW182 proteins interact with PABPC, implicating PABPC in miRNA-mediated silencing for the first time. ArticleCASPubMedPubMed Central Google Scholar
Beilharz, T. H. et al. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS ONE4, e6783 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nature Struct. Mol. Biol.15, 346–353 (2008). ArticleCAS Google Scholar
Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol.15, 2149–2155 (2005). ArticleCASPubMed Google Scholar
Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nature Cell Biol.7, 1261–1266 (2005). ArticlePubMedCAS Google Scholar
Jakymiw, A. et al. Disruption of GW bodies impairs mammalian RNA interference. Nature Cell Biol.7, 1267–1274 (2005). ArticlePubMedCAS Google Scholar
Ding, L., Spencer, A., Morita, K. & Han, M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol. Cell19, 437–447 (2005). References 48–51, together with reference 31, were the first to show a role for GW182 proteins in silencing. ArticleCASPubMed Google Scholar
Ding, L. & Han, M. GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol.17, 411–416 (2007). ArticleCASPubMed Google Scholar
Zhang, L. et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol. Cell28, 598–613 (2007). ArticleCASPubMedPubMed Central Google Scholar
Eulalio, A., Tritschler, F. & Izaurralde, E. The GW182 protein family in animal cells: new insights into domains required for miRNA mediated gene silencing. RNA15, 1433–1442 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tritschler, F., Huntzinger, E. & Izaurralde, E. Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Nature Rev. Mol. Cell Biol.11, 379–384 (2010). ArticleCAS Google Scholar
Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nature Struct. Mol. Biol.14, 897–903 (2007). ArticleCAS Google Scholar
Takimoto, K., Wakiyama, M. & Yokoyama, S. Mammalian GW182 contains multiple Argonaute binding sites and functions in microRNA-mediated translational repression. RNA15, 1078–1089 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lian, S. L. et al. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA15, 804–813 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lazzaretti, D., Tournier, I. & Izaurralde, E. The C-terminal domains of human TNRC6A, B and C silence bound transcripts independently of the Argonaute proteins. RNA15, 1059–1066 (2009). ArticleCASPubMedPubMed Central Google Scholar
Eulalio, A., Helms, S., Fritzsch, C., Fauser, M. & Izaurralde, E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA15, 1067–1077 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zipprich, J. T., Bhattacharyya, S., Mathys, H. & Filipowicz, W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA15, 781–793 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chekulaeva, M., Filipowicz, W. & Parker, R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA15, 794–803 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, S. et al. Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing. J. Cell Sci.121, 4134–4144 (2008). ArticleCASPubMed Google Scholar
Zekri, L, Huntzinger, E., Heimstädt, S. & Izaurralde, E. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of miRNA targets and is required for target release. Mol. Cell. Biol.29, 6220–6231 (2009). This study, together with reference 45, showed that GW182 proteins interact with PABPC, implicating PABPC in miRNA-mediated gene silencing for the first time. ArticleCASPubMedPubMed Central Google Scholar
Walters, R. W., Bradrick, S. S. & Gromeier, M. Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. RNA16, 239–250 (2010). ArticleCASPubMedPubMed Central Google Scholar
Huntzinger, E., Braun, E. J., Heimstädt, S., Zekri, L. & Izaurralde, E. Two PABPC-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J.29, 4146–4160 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kozlov, G., Safaee, N., Rosenauer, A. & Gehring, K. Structural basis of binding of P-body associated protein GW182 and Ataxin-2 by the MLLE domain of poly(A)-binding protein. J. Biol. Chem.285, 13599–13606 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jinek, M., Fabian, M. R., Coyle, S. M., Sonenberg, N. & Doudna, J. A. Structural insights into the human GW182–PABC interaction in microRNA-mediated deadenylation. Nature Struct. Mol. Biol.17, 238–240 (2010). ArticleCAS Google Scholar
Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science297, 2053–2056 (2002). ArticleCASPubMed Google Scholar
Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell110, 513–520 (2002). References 70 and 71 demonstrated that plant miRNAs trigger target cleavage. ArticleCASPubMed Google Scholar
Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev.17, 49–63 (2003). ArticleCASPubMedPubMed Central Google Scholar
Souret, F. F., Kastenmayer, J. P. & Green, P. J. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol. Cell15, 173–183 (2004). ArticleCASPubMed Google Scholar
German, M. A. et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotech.26, 941–946 (2008). ArticleCAS Google Scholar
Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol.18, 758–762 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schwab, R. et al. Specific effects of microRNAs on the plant transcriptome. Dev. Cell8, 517–527 (2005). ArticleCASPubMed Google Scholar
Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science303, 2022–2025 (2004). ArticleCASPubMed Google Scholar
Aukerman, M. J. & Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its _APETALA2_-like target genes. Plant Cell15, 2730–2741 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gandikota, M. et al. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J.49, 683–693 (2007). ArticleCASPubMed Google Scholar
Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science320, 1185–1190 (2008). ArticleCASPubMed Google Scholar
Dugas, D. V. & Bartel, B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol. Biol.67, 403–417 (2008). ArticleCASPubMed Google Scholar
Todesco, M., Rubio-Somoza, I., Paz-Ares, J. & Weigel, D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet.6, e1001031 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Rev. Mol. Cell Biol.11, 113–127 (2010). ArticleCAS Google Scholar
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science324, 218–223 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jinek, M. & Doudna, J. A. A three-dimensional view of the molecular machinery of RNA interference. Nature457, 405–412 (2009). ArticleCASPubMed Google Scholar