How cells get the message: dynamic assembly and function of mRNA–protein complexes (original) (raw)
Fischer, U., Englbrecht, C. & Chari, A. Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip. Rev. RNA2, 718–731 (2011). CASPubMed Google Scholar
Watkins, N. J. & Bohnsack, M. T. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip. Rev. RNA3, 397–414 (2012). CASPubMed Google Scholar
Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nature Rev. Genet.8, 533–543 (2007). CASPubMed Google Scholar
Ascano, M., Hafner, M., Cekan, P., Gerstberger, S. & Tuschl, T. Identification of RNA–protein interaction networks using PAR-CLIP. Wiley Interdiscip. Rev. RNA3, 159–177 (2012). CASPubMed Google Scholar
Anko, M. L. & Neugebauer, K. M. RNA–protein interactions in vivo: global gets specific. Trends Biochem. Sci.37, 255–262 (2012). PubMed Google Scholar
Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell136, 688–700 (2009). CASPubMed Google Scholar
Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nature Rev. Genet.13, 246–259 (2012). CASPubMed Google Scholar
König, J., Zarnack, K., Luscombe, N. M. & Ule, J. Protein–RNA interactions: new genomic technologies and perspectives. Nature Rev. Genet.13, 77–83 (2011). Google Scholar
Tutucci, E. & Stutz, F. Keeping mRNPs in check during assembly and nuclear export. Nature Rev. Mol. Cell Biol.12, 377–384 (2011). CAS Google Scholar
Grunwald, D. & Singer, R. H. Multiscale dynamics in nucleocytoplasmic transport. Curr. Opin. Cell Biol.24, 100–106 (2012). PubMed Google Scholar
Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell149, 1393–1406 (2012). CASPubMed Google Scholar
Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell46, 674–690 (2012). References 11 and 12 introduce new methods to identify RNA-binding proteins globally in human cell lines, to provide a comprehensive atlas of proteins that can bind to polyadenylated RNAs and to identify novel RNA-binding domains. CASPubMed Google Scholar
Mitchell, S. F., Jain, S., She, M. & Parker, R. Global analysis of yeast mRNPs. Nature Struct. Mol. Biol.20, 127–133 (2013). CAS Google Scholar
Kishore, S., Luber, S. & Zavolan, M. Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. Brief. Funct. Genom.9, 391–404 (2010). CAS Google Scholar
Cui, X. A., Zhang, H. & Palazzo, A. F. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol.10, e1001336 (2012). CASPubMedPubMed Central Google Scholar
Mackereth, C. D. & Sattler, M. Dynamics in multi-domain protein recognition of RNA. Curr. Opin. Struct. Biol.22, 287–296 (2012). CASPubMed Google Scholar
Wahl, M. C., Will, C. L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell136, 701–718 (2009). CASPubMed Google Scholar
MacRae, I. J., Zhou, K. & Doudna, J. A. Structural determinants of RNA recognition and cleavage by Dicer. Nature Struct. Mol. Biol.14, 934–940 (2007). CAS Google Scholar
Lamichhane, R., Solem, A., Black, W. & Rueda, D. Single-molecule FRET of protein–nucleic acid and protein–protein complexes: surface passivation and immobilization. Methods52, 192–200 (2010). CASPubMedPubMed Central Google Scholar
Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nature Struct. Mol. Biol.17, 909–915 (2010). Introducing a new method to identify direct binding sites of RNA-binding proteins with a high resolution, termed iCLIP, the authors of this paper indicate that hnRNPC is crucial for the co-transcriptional packaging of most RNAs and provide a functional link to alternative splicing. Google Scholar
Kumar, A. & Pederson, T. Comparison of proteins bound to heterogeneous nuclear RNA and messenger RNA in HeLa cells. J. Mol. Biol.96, 353–365 (1975). CASPubMed Google Scholar
Beyer, A. L., Christensen, M. E., Walker, B. W. & LeStourgeon, W. M. Identification and characterization of the packaging proteins of core 40S hnRNP particles. Cell11, 127–138 (1977). CASPubMed Google Scholar
Derman, E., Goldberg, S. & Darnell, J. E. Jr. hnRNA in HeLa cells: distribution of transcript sizes estimated from nascent molecule profile. Cell9, 465–472 (1976). CASPubMed Google Scholar
Mor, A. et al. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nature Cell Biol.12, 543–552 (2010). CASPubMed Google Scholar
Gorlach, M., Burd, C. G., Portman, D. S. & Dreyfuss, G. The hnRNP proteins. Mol. Biol. Rep.18, 73–78 (1993). CASPubMed Google Scholar
Dreyfuss, G., Choi, Y. D. & Adam, S. A. The ribonucleoprotein structures along the pathway of mRNA formation. Endocr. Res.15, 441–474 (1989). CASPubMed Google Scholar
Weighardt, F., Biamonti, G. & Riva, S. The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism. BioEssays18, 747–756 (1996). CASPubMed Google Scholar
McAfee, J. G., Soltaninassab, S. R., Lindsay, M. E. & LeStourgeon, W. M. Proteins C1 and C2 of heterogeneous nuclear ribonucleoprotein complexes bind RNA in a highly cooperative fashion: support for their contiguous deposition on pre-mRNA during transcription. Biochemistry35, 1212–1222 (1996). CASPubMed Google Scholar
McAfee, J. G., Shahied-Milam, L., Soltaninassab, S. R. & LeStourgeon, W. M. A major determinant of hnRNP C protein binding to RNA is a novel bZIP-like RNA binding domain. RNA2, 1139–1152 (1996). CASPubMedPubMed Central Google Scholar
Huang, M. et al. The C-protein tetramer binds 230 to 240 nucleotides of pre-mRNA and nucleates the assembly of 40S heterogeneous nuclear ribonucleoprotein particles. Mol. Cell. Biol.14, 518–533 (1994). CASPubMedPubMed Central Google Scholar
Neugebauer, K. M. Please hold—the next available exon will be right with you. Nature Struct. Mol. Biol.13, 385–386 (2006). CAS Google Scholar
Bentley, D. L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol.17, 251–256 (2005). CASPubMed Google Scholar
Listerman, I., Sapra, A. K. & Neugebauer, K. M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nature Struct. Mol. Biol.13, 815–822 (2006). CAS Google Scholar
Wetterberg, I., Zhao, J., Masich, S., Wieslander, L. & Skoglund, U. In situ transcription and splicing in the Balbiani ring 3 gene. EMBO J.20, 2564–2574 (2001). CASPubMedPubMed Central Google Scholar
Aguilera, A. & Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell46, 115–124 (2012). CASPubMed Google Scholar
Dye, M. J., Gromak, N. & Proudfoot, N. J. Exon tethering in transcription by RNA polymerase II. Mol. Cell21, 849–859 (2006). CASPubMed Google Scholar
Martinez-Contreras, R. et al. hnRNP proteins and splicing control. Adv. Exp. Med. Biol.623, 123–147 (2007). PubMed Google Scholar
Vargas, D. Y. et al. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell147, 1054–1065 (2011). CASPubMedPubMed Central Google Scholar
McCloskey, A. Taniguchi, I., Shinmyozu, K. & Ohno, M. hnRNP C tetramer measures RNA length to classify RNA polymerase II transcripts for export. Science335, 1643–1646 (2012). This paper describes a new mechanism in which Pol II transcripts are sorted according to their length prior to nuclear export and identified hnRNPC as the key player. CASPubMed Google Scholar
Merz, C., Urlaub, H., Will, C. L. & Luhrmann, R. Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA13, 116–128 (2007). CASPubMedPubMed Central Google Scholar
Anko, M. L., Morales, L., Henry, I., Beyer, A. & Neugebauer, K. M. Global analysis reveals SRp20- and SRp75-specific mRNPs in cycling and neural cells. Nature Struct. Mol. Biol.17, 962–970 (2010). Google Scholar
Singh, G. et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell151, 750–764 (2012). This paper presents compelling evidence suggesting that the EJC and SR proteins cooperate in the packaging and compaction of mature mRNPs for efficient nuclear export. CASPubMedPubMed Central Google Scholar
Sauliere, J. et al. CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nature Struct. Mol. Biol.19, 1124–1131 (2012). CAS Google Scholar
Bjork, P. et al. Specific combinations of SR proteins associate with single pre-messenger RNAs in vivo and contribute different functions. J. Cell Biol.184, 555–568 (2009). PubMedPubMed Central Google Scholar
Walsh, M. J., Hautbergue, G. M. & Wilson, S. A. Structure and function of mRNA export adaptors. Biochem. Soc. Trans.38, 232–236 (2010). CASPubMed Google Scholar
Sapra, A. K. et al. SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol. Cell34, 179–190 (2009). CASPubMed Google Scholar
Lin, S., Xiao, R., Sun, P., Xu, X. & Fu, X. D. Dephosphorylation-dependent sorting of SR splicing factors during mRNP maturation. Mol. Cell20, 413–425 (2005). CASPubMed Google Scholar
Caceres, J. F., Screaton, G. R. & Krainer, A. R. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev.12, 55–66 (1998). CASPubMedPubMed Central Google Scholar
Delestienne, N. et al. The splicing factor ASF/SF2 is associated with TIA-1-related/TIA-1-containing ribonucleoproteic complexes and contributes to post-transcriptional repression of gene expression. FEBS J.277, 2496–2514 (2010). CASPubMed Google Scholar
Anko, M. L. et al. The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol.13, R17 (2012). PubMedPubMed Central Google Scholar
Huang, Y. & Steitz, J. A. SRprises along a messenger's journey. Mol. Cell17, 613–615 (2005). CASPubMed Google Scholar
Erkmann, J. A., Sanchez, R., Treichel, N., Marzluff, W. F. & Kutay, U. Nuclear export of metazoan replication-dependent histone mRNAs is dependent on RNA length and is mediated by TAP. RNA11, 45–58 (2005). CASPubMedPubMed Central Google Scholar
Strasser, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature417, 304–308 (2002). PubMed Google Scholar
Reed, R. & Cheng, H. TREX, SR proteins and export of mRNA. Curr. Opin. Cell Biol.17, 269–273 (2005). CASPubMed Google Scholar
Dias, A. P., Dufu, K., Lei, H. & Reed, R. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nature Commun.1, 97 (2010). Google Scholar
Katahira, J., Inoue, H., Hurt, E. & Yoneda, Y. Adaptor Aly and co-adaptor Thoc5 function in the Tap-p15-mediated nuclear export of HSP70 mRNA. EMBO J.28, 556–567 (2009). CASPubMedPubMed Central Google Scholar
Lei, H., Dias, A. P. & Reed, R. Export and stability of naturally intronless mRNAs require specific coding region sequences and the TREX mRNA export complex. Proc. Natl Acad. Sci. USA108, 17985–17990 (2011). CASPubMedPubMed Central Google Scholar
Palazzo, A. F. et al. The signal sequence coding region promotes nuclear export of mRNA. PLoS Biol.5, e322 (2007). PubMedPubMed Central Google Scholar
Palazzo, A. F. & Akef, A. Nuclear export as a key arbiter of 'mRNA identity' in eukaryotes. Biochim. Biophys. Acta1819, 566–577 (2012). CASPubMed Google Scholar
Cheng, H. et al. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell127, 1389–1400 (2006). CASPubMed Google Scholar
Nojima, T., Hirose, T., Kimura, H. & Hagiwara, M. The interaction between cap-binding complex and RNA export factor is required for intronless mRNA export. J. Biol. Chem.282, 15645–15651 (2007). CASPubMed Google Scholar
Sullivan, K. D., Mullen, T. E., Marzluff, W. F. & Wagner, E. J. Knockdown of SLBP results in nuclear retention of histone mRNA. RNA15, 459–472 (2009). CASPubMedPubMed Central Google Scholar
Narita, T. et al. NELF interacts with CBC and participates in 3′ end processing of replication-dependent histone mRNAs. Mol. Cell26, 349–365 (2007). CASPubMed Google Scholar
Wickramasinghe, V. O. et al. mRNA export from mammalian cell nuclei is dependent on GANP. Curr. Biol.20, 25–31 (2010). CASPubMedPubMed Central Google Scholar
Jani, D. et al. Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res.40, 4562–4573 (2012). CASPubMedPubMed Central Google Scholar
Lou, H., Neugebauer, K. M., Gagel, R. F. & Berget, S. M. Regulation of alternative polyadenylation by U1 snRNPs and SRp20. Mol. Cell. Biol.18, 4977–4985 (1998). CASPubMedPubMed Central Google Scholar
Berg, M. G. et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell150, 53–64 (2012). This paper establishes U1 snRNP as a molecular ruler and describes how U1 snRNP levels influence the length of transcripts through suppression of PCPA. The authors demonstrate the physiological importance of this role of U1 snRNP in activated neurons. CASPubMedPubMed Central Google Scholar
Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature468, 664–668 (2010). In this study, the authors discovered a new splicing-independent function of U1 snRNP as a suppressor of alternative polyadenylation. The authors show that U1 snRNP protects pre-mRNAs from PCPA by binding to inappropriate poly(A) sites present within introns of pre-mRNAs. CASPubMedPubMed Central Google Scholar
Eckmann, C. R., Rammelt, C. & Wahle, E. Control of poly(A) tail length. Wiley Interdiscip. Rev. RNA2, 348–361 (2011). CASPubMed Google Scholar
Keller, R. W. et al. The nuclear poly(A) binding protein, PABP2, forms an oligomeric particle covering the length of the poly(A) tail. J. Mol. Biol.297, 569–583 (2000). CASPubMed Google Scholar
Lemay, J.-F., Lemieux, C., St-André, O. & Bachand, F. Crossing the borders: poly(A)-binding proteins working on both sides of the fence. RNA Biol.7, 291–295 (2010). CASPubMed Google Scholar
Jenal, M. et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell149, 538–553 (2012). This work identified the nuclear poly(A)-binding protein PABPN1 as a potent suppressor of alternative polyadenylation and revealed the importance of APA in the pathology of a human disease caused by changes in PABPN1 levels. CASPubMed Google Scholar
Martin, G., Gruber, A. R., Keller, W. & Zavolan, M. Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Rep.1, 753–763 (2012). CASPubMed Google Scholar
Ruepp, M. D. Schümperli, D. & Barabino, S.M. mRNA 3′ end processing and more—multiple functions of mammalian cleavage factor I-68. Wiley Interdiscip. Rev. RNA2, 79–91 (2011). CASPubMed Google Scholar
Lykke-Andersen, S., Brodersen, D. E. & Jensen, T. H. Origins and activities of the eukaryotic exosome. J. Cell Sci.122, 1487–1494 (2009). CASPubMed Google Scholar
Butler, J. S. & Mitchell, P. Rrp6, Rrp47 and cofactors of the nuclear exosome. Adv. Exp. Med. Biol.702, 91–104 (2010). CASPubMed Google Scholar
Lemay, J. F. et al. The nuclear poly(A)-binding protein interacts with the exosome to promote synthesis of noncoding small nucleolar RNAs. Mol. Cell37, 34–45 (2010). CASPubMed Google Scholar
Lubas, M. et al. Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell43, 624–637 (2011). CASPubMed Google Scholar
Shcherbik, N., Wang, M., Lapik, Y. R. Srivastava, L. & Pestov, D. G. Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells. EMBO Rep.11, 106–111 (2010). CASPubMedPubMed Central Google Scholar
Guo, T. B. et al. Spermatogenetic expression of RNA-binding motif protein 7, a protein that interacts with splicing factors. J. Androl.24, 204–214 (2003). CASPubMed Google Scholar
Nag, A. & Steitz, J. A. Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing. RNA Biol.9, 334–342 (2012). CASPubMedPubMed Central Google Scholar
Ni, J. Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev.21, 708–718 (2007). CASPubMedPubMed Central Google Scholar
Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature446, 926–929 (2007). CASPubMed Google Scholar
Sureau, A., Gattoni, R., Dooghe, Y., Stevenin, J. & Soret, J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J.20, 1785–1796 (2001). CASPubMedPubMed Central Google Scholar
Jumaa, H. & Nielsen, P. J. The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J.16, 5077–5085 (1997). CASPubMedPubMed Central Google Scholar
Sun, S., Zhang, Z., Sinha, R., Karni, R. & Krainer, A. R. SF2/ASF autoregulation involves multiple layers of post-transcriptional and translational control. Nature Struct. Mol. Biol.17, 306–312 (2010). CAS Google Scholar
Conti, E. & Izaurralde, E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol.17, 316–325 (2005). CASPubMed Google Scholar
Zhang, Z. & Krainer, A. R. Involvement of SR proteins in mRNA surveillance. Mol. Cell16, 597–607 (2004). CASPubMed Google Scholar
Sato, H., Hosoda, N. & Maquat, L. E. Efficiency of the pioneer round of translation affects the cellular site of nonsense-mediated mRNA decay. Mol. Cell29, 255–262 (2008). CASPubMed Google Scholar
Muhlemann, O. & Lykke-Andersen, J. How and where are nonsense mRNAs degraded in mammalian cells? RNA Biol.7, 28–32 (2010). CASPubMedPubMed Central Google Scholar
Sun, M. et al. Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res.22, 1350–1359 (2012). CASPubMedPubMed Central Google Scholar
Dori-Bachash, M., Shema, E. & Tirosh, I. Coupled evolution of transcription and mRNA degradation. PLoS Biol.9, e1001106 (2011). CASPubMedPubMed Central Google Scholar
Trcek, T., Larson, D. R., Moldon, A., Query, C. C. & Singer, R. H. Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell147, 1484–1497 (2011). Using single-cell single molecule techniques, this study demonstrates for the first time a direct link between nuclear transcription and cytoplasmic mRNA stability. CASPubMedPubMed Central Google Scholar
Bregman, A. et al. Promoter elements regulate cytoplasmic mRNA decay. Cell147, 1473–1483 (2011). CASPubMed Google Scholar
Heym, R. G. & Niessing, D. Principles of mRNA transport in yeast. Cell. Mol. Life Sci.69, 1843–1853 (2012). CASPubMed Google Scholar
Shen, Z., St-Denis, A. & Chartrand, P. Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud. Genes Dev.24, 1914–1926 (2010). CASPubMedPubMed Central Google Scholar
Shen, Z., Paquin, N., Forget, A. & Chartrand, P. Nuclear shuttling of She2p couples ASH1 mRNA localization to its translational repression by recruiting Loc1p and Puf6p. Mol. Biol. Cell20, 2265–2275 (2009). CASPubMedPubMed Central Google Scholar
Long, R. M., Gu, W., Lorimer, E., Singer, R. H. & Chartrand, P. She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J.19, 6592–6601 (2000). CASPubMedPubMed Central Google Scholar
Gu, W., Pan, F., Zhang, H., Bassell, G. J. & Singer, R. H. A predominantly nuclear protein affecting cytoplasmic localization of β-actin mRNA in fibroblasts and neurons. J. Cell Biol.156, 41–51 (2002). CASPubMedPubMed Central Google Scholar
Pan, F., Huttelmaier, S., Singer, R. H. & Gu, W. ZBP2 facilitates binding of ZBP1 to β-actin mRNA during transcription. Mol. Cell. Biol.27, 8340–8351 (2007). CASPubMedPubMed Central Google Scholar
Hachet, O. & Ephrussi, A. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature428, 959–963 (2004). CASPubMed Google Scholar
Ghosh, S., Marchand, V., Gaspar, I. & Ephrussi, A. Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nature Struct. Mol. Biol.19, 441–449 (2012). This paper provides a mechanistic link between nuclear splicing and localized translation ofoskarmRNA in the cytoplasm. CAS Google Scholar
Trcek, T. & Singer, R. H. The cytoplasmic fate of an mRNP is determined cotranscriptionally: exception or rule? Genes Dev.24, 1827–1831 (2010). CASPubMedPubMed Central Google Scholar
Viphakone, N. et al. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nature Commun.3, 1006 (2012). Google Scholar
Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res.40, 5023–5033 (2012). CASPubMedPubMed Central Google Scholar
Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature485, 201–206 (2012). CASPubMed Google Scholar
Klug, S. J. & Famulok, M. All you wanted to know about SELEX. Mol. Biol. Rep.20, 97–107 (1994). CASPubMed Google Scholar
Martin, F. Fifteen years of the yeast three-hybrid system: RNA–protein interactions under investigation. Methods58, 367–375 (2012). CASPubMed Google Scholar
Niranjanakumari, S., Lasda, E., Brazas, R. & Garcia-Blanco, M. A. Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods26, 182–190 (2002). CASPubMed Google Scholar
Keene, J. D., Komisarow, J. M. & Friedersdorf, M. B. RIP-chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nature Protoc.1, 302–307 (2006). CAS Google Scholar
Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature456, 464–469 (2008). CASPubMedPubMed Central Google Scholar
Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell141, 129–141 (2010). CASPubMedPubMed Central Google Scholar
Kishore, S. et al. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nature Methods8, 559–564 (2011). CASPubMed Google Scholar
Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl Acad. Sci. USA108, 10010–10015 (2011). CASPubMedPubMed Central Google Scholar
Speese, S. D. et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell149, 832–846 (2012). CASPubMedPubMed Central Google Scholar
Wu, C. H. et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev.17, 1402–1414 (2003). CASPubMedPubMed Central Google Scholar
Gruber, J. J. et al. Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell138, 328–339 (2009). CASPubMedPubMed Central Google Scholar
Gruber, J. J. et al. Ars2 promotes proper replication-dependent histone mRNA 3′ end formation. Mol. Cell45, 87–98 (2012). CASPubMedPubMed Central Google Scholar
Lahudkar, S. et al. The mRNA cap-binding complex stimulates the formation of pre-initiation complex at the promoter via its interaction with Mot1p in vivo. Nucleic Acids Res.39, 2188–2209 (2011). CASPubMed Google Scholar
Marzluff, W. F., Wagner, E. J. & Duronio, R. J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nature Rev. Genet.9, 843–854 (2008). CASPubMed Google Scholar
Maquat, L. E., Hwang, J., Sato, H. & Tang, Y. CBP80-promoted mRNP rearrangements during the pioneer round of translation, nonsense-mediated mRNA decay, and thereafter. Cold Spring Harb. Symp. Quant. Biol.75, 127–134 (2010). CASPubMed Google Scholar
Visa, N., Izaurralde, E., Ferreira, J., Daneholt, B. & Mattaj, I. W. A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export. J. Cell Biol.133, 5–14 (1996). CASPubMed Google Scholar
Katahira, J. mRNA export and the TREX complex. Biochim. Biophys. Acta1819, 507–513 (2012). CASPubMed Google Scholar
Hautbergue, G. M. et al. UIF, a new mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA. Curr. Biol.19, 1918–1924 (2009). CASPubMedPubMed Central Google Scholar
Ruepp, M. D. et al. Mammalian pre-mRNA 3′ end processing factor CF Im68 functions in mRNA export. Mol. Biol. Cell20, 5211–5223 (2009). CASPubMedPubMed Central Google Scholar
Huang, Y., Gattoni, R., Stévenin, J. & Steitz, J. A. S. R. Splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol. Cell11, 837–843 (2003). CASPubMed Google Scholar