Natural selection and infectious disease in human populations (original) (raw)
Fumagalli, M. et al. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet.7, e1002355 (2011). This study of genetic variation in 50 worldwide populations reveals that pathogens are primary drivers of local adaptation. ArticleCASPubMedPubMed Central Google Scholar
Polgar, S. in Horizons of Anthropology (ed. Tax, S. ) (Aldine, 1964). Google Scholar
Armelagos, G. J., Barnes, K. C. & Lin, J. Disease in human evolution: the re-emergence of infectious disease in the third epidemiological transition. AnthroNotes18, 1–7 (1996). Article Google Scholar
Bocquet-Appel, J. P. When the world's population took off: the springboard of the Neolithic demographic transition. Science333, 560–561 (2011). ArticleCASPubMed Google Scholar
Vannberg, F. O., Chapman, S. J. & Hill, A. V. Human genetic susceptibility to intracellular pathogens. Immunol. Rev.240, 105–116 (2011). ArticleCASPubMed Google Scholar
Chapman, S. J. & Hill, A. V. Human genetic susceptibility to infectious disease. Nature Rev. Genet.13, 175–188 (2012). ArticleCASPubMed Google Scholar
Anderson, R. M. & May, R. M. Co-evolution of hosts and parasites. Parasitology85, 411–426 (1982). ArticlePubMed Google Scholar
Cagliani, R. et al. Crohn's disease loci are common targets of protozoa-driven selection. Mol. Biol. Evol.30, 1077–1087 (2013). ArticleCASPubMed Google Scholar
Okada, H., Kuhn, C., Feillet, H. & Bach, J. F. The 'hygiene hypothesis' for autoimmune and allergic diseases: an update. Clin. Exp. Immunol.160, 1–9 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jostins, L. et al. Host–microorganism interactions have shaped the genetic architecture of inflammatory bowel disease. Nature491, 119–124 (2012). This paper presents selection for pathogen resistance in IBD. ArticleCASPubMedPubMed Central Google Scholar
Sironi, M. & Clerici, M. The hygiene hypothesis: an evolutionary perspective. Microbes. Infect.12, 421–427 (2010). ArticlePubMed Google Scholar
Lin, A. et al. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS ONE8, e53838 (2013). ArticleCASPubMedPubMed Central Google Scholar
Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K. & Mardis, E. R. The next-generation sequencing revolution and its impact on genomics. Cell155, 27–38 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hellmann, I., Ebersberger, I., Ptak, S. E., Paabo, S. & Przeworski, M. A neutral explanation for the correlation of diversity with recombination rates in humans. Am. J. Hum. Genet.72, 1527–1535 (2003). ArticleCASPubMedPubMed Central Google Scholar
Albrechtsen, A., Nielsen, F. C. & Nielsen, R. Ascertainment biases in SNP chips affect measures of population divergence. Mol. Biol. Evol.27, 2534–2547 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jallow, M. et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nature Genet.41, 657–665 (2009). ArticleCASPubMed Google Scholar
Ronald, J. & Akey, J. M. Genome-wide scans for loci under selection in humans. Hum. Genom.2, 113–125 (2005). ArticleCAS Google Scholar
Bamshad, M. & Wooding, S. P. Signatures of natural selection in the human genome. Nature Rev. Genet.4, 99–111 (2003). ArticleCASPubMed Google Scholar
Fu, W. & Akey, J. M. Selection and adaptation in the human genome. Annu. Rev. Genom. Hum. Genet.14, 467–489 (2013). ArticleCAS Google Scholar
Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data. Annu. Rev. Genet.47, 97–120 (2013). ArticleCASPubMed Google Scholar
Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet.77, 171–192 (2005). This study shows that investigating targets of pathogen-driven selection leads to immunological discoveries and possible new therapies. ArticleCASPubMedPubMed Central Google Scholar
Sabeti, P. C. et al. Positive natural selection in the human lineage. Science312, 1614–1620 (2006). ArticleCASPubMed Google Scholar
Deagle, B. E. et al. Population genomics of parallel phenotypic evolution in stickleback across stream–lake ecological transitions. Proc. Biol. Sci.279, 1277–1286 (2012). ArticleCASPubMed Google Scholar
Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature449, 913–918 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pritchard, J. K., Pickrell, J. K. & Coop, G. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr. Biol.20, R208–R215 (2010). ArticleCASPubMedPubMed Central Google Scholar
Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res.12, 1805–1814 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bustamante, C. D. et al. Natural selection on protein-coding genes in the human genome. Nature437, 1153–1157 (2005). ArticleCASPubMed Google Scholar
Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature449, 851–861 (2007). ArticleCASPubMed Google Scholar
Pickrell, J. K. et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res.19, 826–837 (2009). ArticleCASPubMedPubMed Central Google Scholar
Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol.4, e72 (2006). ArticlePubMedPubMed Central Google Scholar
Barreiro, L. B., Laval, G., Quach, H., Patin, E. & Quintana-Murci, L. Natural selection has driven population differentiation in modern humans. Nature Genet.40, 340–345 (2008). ArticleCASPubMed Google Scholar
Bhatia, G. et al. Genome-wide comparison of African-ancestry populations from CARe and other cohorts reveals signals of natural selection. Am. J. Hum. Genet.89, 368–381 (2011). ArticleCASPubMedPubMed Central Google Scholar
Grossman, S. R. et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science327, 883–886 (2010). ArticleCASPubMed Google Scholar
McClelland, E. E., Penn, D. J. & Potts, W. K. Major histocompatibility complex heterozygote superiority during co-infection. Infect. Immun.71, 2079–2086 (2003). ArticleCASPubMedPubMed Central Google Scholar
Aguilar, A. et al. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc. Natl. Acad. Sci. USA101, 3490–3494 (2004). ArticleCASPubMedPubMed Central Google Scholar
Prugnolle, F. et al. Pathogen-driven selection and worldwide HLA class I diversity. Curr. Biol.15, 1022–1027 (2005). ArticleCASPubMed Google Scholar
de Bakker, P. I. & Raychaudhuri, S. Interrogating the major histocompatibility complex with high-throughput genomics. Hum. Mol. Genet.21, R29–R36 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hindorff, L. A. et al. Potential aetiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA106, 9362–9367 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pereyra, F. et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science330, 1551–1557 (2010). ArticleCASPubMedPubMed Central Google Scholar
Limou, S. et al. Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02). J. Infect. Dis.199, 419–426 (2009). ArticlePubMed Google Scholar
Zhang, F. R. et al. Genomewide association study of leprosy. N. Engl. J. Med.361, 2609–2618 (2009). ArticleCASPubMed Google Scholar
LeishGEN Consortium et al. Common variants in the HLA-DRB1–HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis. Nature Genet.45, 208–213 (2013).
Kamatani, Y. et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nature Genet.41, 591–595 (2009). ArticleCASPubMed Google Scholar
Mbarek, H. et al. A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum. Mol. Genet.20, 3884–3892 (2011). ArticleCASPubMed Google Scholar
Nishida, N. et al. Genome-wide association study confirming association of _HLA_-DP with protection against chronic hepatitis B and viral clearance in Japanese and Korean. PLoS ONE7, e39175 (2012). ArticleCASPubMedPubMed Central Google Scholar
Duggal, P. et al. Genome-wide association study of spontaneous resolution of hepatitis C virus infection: data from multiple cohorts. Ann. Intern. Med.158, 235–245 (2013). ArticlePubMedPubMed Central Google Scholar
Chen, D. et al. Genome-wide association study of HPV seropositivity. Hum. Mol. Genet.20, 4714–4723 (2011). ArticleCASPubMed Google Scholar
Hanchard, N. A. et al. Screening for recently selected alleles by analysis of human haplotype similarity. Am. J. Hum. Genet.78, 153–159 (2006). ArticleCASPubMed Google Scholar
Hanchard, N. et al. Classical sickle β-globin haplotypes exhibit a high degree of long-range haplotype similarity in African and Afro-Caribbean populations. BMC Genet.8, 52 (2007). ArticleCASPubMedPubMed Central Google Scholar
Klein, J., Satta, Y., O'hUigin, C. & Takahata, N. The molecular descent of the major histocompatibility complex. Annu. Rev. Immunol.11, 269–295 (1993). ArticleCASPubMed Google Scholar
Segurel, L. et al. The ABO blood group is a trans-species polymorphism in primates. Proc. Natl. Acad. Sci. USA109, 18493–18498 (2012). ArticleCASPubMedPubMed Central Google Scholar
Leffler, E. M. et al. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science339, 1578–1582 (2013). ArticleCASPubMedPubMed Central Google Scholar
Olofsson, S. & Bergstrom, T. Glycoconjugate glycans as viral receptors. Ann. Med.37, 154–172 (2005). ArticleCASPubMed Google Scholar
Day, C. J., Semchenko, E. A. & Korolik, V. Glycoconjugates play a key role in Campylobacter jejuni infection: interactions between host and pathogen. Front. Cell. Infect. Microbiol.2, 9 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ko, W.-Y. et al. Effects of natural selection and gene conversion on the evolution of human glycophorins coding for MNS blood polymorphisms in malaria-endemic African populations. Am. J. Hum. Genet.88, 741–754 (2011). ArticleCASPubMedPubMed Central Google Scholar
Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics134, 1289–1303 (1993). CASPubMedPubMed Central Google Scholar
Harris, J. B. et al. Susceptibility to Vibrio cholerae Infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl. Trop. Dis.2, e221 (2008). ArticlePubMedPubMed Central Google Scholar
Hong, E. P. & Park, J. W. Sample size and statistical power calculation in genetic association studies. Genom. Inform10, 117–122 (2012). Article Google Scholar
McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet.9, 356–369 (2008). ArticleCASPubMed Google Scholar
Hill, A. V. Evolution, revolution and heresy in the genetics of infectious disease susceptibility. Phil. Trans. R. Soc. B367, 840–849 (2012). ArticleCASPubMedPubMed Central Google Scholar
Siontis, K. C., Patsopoulos, N. A. & Ioannidis, J. P. Replication of past candidate loci for common diseases and phenotypes in 100 genome-wide association studies. Eur. J. Hum. Genet.18, 832–837 (2010). ArticleCASPubMedPubMed Central Google Scholar
Thye, T. et al. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nature Genet.42, 739–741 (2010). ArticleCASPubMed Google Scholar
Qu, H. Q., Li, Q., McCormick, J. B. & Fisher-Hoch, S. P. What did we learn from the genome-wide association study for tuberculosis susceptibility? J. Med. Genet.48, 217–218 (2011). ArticlePubMed Google Scholar
Qu, H. Q., Fisher-Hoch, S. P. & McCormick, J. B. Knowledge gaining by human genetic studies on tuberculosis susceptibility. J. Hum. Genet.56, 177–182 (2011). ArticleCASPubMed Google Scholar
Kaslow, R. A., McNicholl, J. & Hill, A. V. S. Genetic Susceptibility to Infectious Diseases (Oxford Univ. Press, 2008). Google Scholar
Roeder, K., Bacanu, S. A., Wasserman, L. & Devlin, B. Using linkage genome scans to improve power of association in genome scans. Am. J. Hum. Genet.78, 243–252 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ayodo, G. et al. Combining evidence of natural selection with association analysis increases power to detect malaria-resistance variants. Am. J. Hum. Genet.81, 234–242 (2007). This paper shows that signals of positive selection can increase power to detect associations. ArticleCASPubMedPubMed Central Google Scholar
Park, D. J. et al. Sequence-based association and selection scans identify drug resistance loci in the Plasmodium falciparum malaria parasite. Proc. Natl. Acad. Sci. USA109, 13052–13057 (2012). ArticleCASPubMedPubMed Central Google Scholar
Daub, J. T. et al. Evidence for polygenic adaptation to pathogens in the human genome. Mol. Biol. Evol.30, 1544–1558 (2013). ArticleCASPubMed Google Scholar
Lee, P. H. et al. Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the aetiology of major depressive disorder. Transl. Psychiatry2, e184 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, K., Li, M. & Hakonarson, H. Analysing biological pathways in genome-wide association studies. Nature Rev. Genet.11, 843–854 (2010). ArticleCASPubMed Google Scholar
Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012). ArticleCAS Google Scholar
Kudaravalli, S., Veyrieras, J. B., Stranger, B. E., Dermitzakis, E. T. & Pritchard, J. K. Gene expression levels are a target of recent natural selection in the human genome. Mol. Biol. Evol.26, 649–658 (2009). ArticleCASPubMed Google Scholar
Raj, T. et al. Common risk alleles for inflammatory diseases are targets of recent positive selection. Am. J. Hum. Genet.92, 517–529 (2013). This paper presents a systems-based analysis that integrates GWAS, selection, functional data and eQTL mapping. ArticleCASPubMedPubMed Central Google Scholar
Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature467, 52–58 (2010). ArticleCASPubMed Google Scholar
Rosenbloom, K. R. et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res.41, D56–D63 (2013). ArticleCASPubMed Google Scholar
Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nature Biotech.30, 271–277 (2012). ArticleCAS Google Scholar
Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet.93, 779–797 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Rev. Genet.14, 618–630 (2013). ArticleCASPubMed Google Scholar
Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science343, 84–87 (2014). ArticleCASPubMed Google Scholar
Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science343, 80–84 (2014). ArticleCASPubMed Google Scholar
Hindorff, L. A. et al. Potential aetiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA106, 9362–9367 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. The lactase persistence/non-persistence polymorphism is controlled by a _cis_-acting element. Hum. Mol. Genet.4, 657–662 (1995). ArticleCASPubMed Google Scholar
World Health Organization. World Malaria Report 2011. WHO[online], (2011).
Hartl, D. L. The origin of malaria: mixed messages from genetic diversity. Nature Rev. Microbiol.2, 15–22 (2004). ArticleCAS Google Scholar
Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med.295, 302–304 (1976). ArticleCASPubMed Google Scholar
Tournamille, C., Colin, Y., Cartron, J. P. & Le Van Kim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nature Genet.10, 224–228 (1995). ArticleCASPubMed Google Scholar
Shimizu, Y. et al. Sero- and molecular typing of Duffy blood group in Southeast Asians and Oceanians. Hum. Biol.72, 511–518 (2000). CASPubMed Google Scholar
Menard, D. et al. Plasmodium vivax clinical malaria is commonly observed in _Duffy_-negative Malagasy people. Proc. Natl. Acad. Sci. USA107, 5967–5971 (2010). ArticleCASPubMedPubMed Central Google Scholar
Menard, D. et al. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains. PLoS Negl. Trop. Dis.7, e2489 (2013). ArticleCASPubMedPubMed Central Google Scholar
Teo, Y.-Y., Small, K. S. & Kwiatkowski, D. P. Methodological challenges of genome-wide association analysis in Africa. Nature Rev. Genet.11, 149–160 (2010). ArticleCASPubMed Google Scholar
Timmann, C. et al. Genome-wide association study indicates two novel resistance loci for severe malaria. Nature489, 443–446 (2012). ArticleCASPubMed Google Scholar
Band, G. et al. Imputation-based meta-analysis of severe malaria in three African populations. PLoS Genet.9, e1003509 (2013). This study presents new methods for tackling complex GWASs. ArticleCASPubMedPubMed Central Google Scholar
Achidi, E. A. et al. A global network for investigating the genomic epidemiology of malaria. Nature456, 732–737 (2008). ArticleCAS Google Scholar
van Brakel, W. H. Measuring leprosy stigma — a preliminary review of the leprosy literature. Int. J. Lepr. Other Mycobact. Dis.71, 190–197 (2003). ArticlePubMed Google Scholar
Rao, P. S. et al. Disability adjusted working life years (DAWLYs) of leprosy affected persons in India. Indian J. Med. Res.137, 907–910 (2013). CASPubMedPubMed Central Google Scholar
Guinto, R. S., Doull, J. A. & De Guia, L. Mortality of persons with leprosy before sulphone therapy, Cordova and Talisay, Cebu, Philippines. Int. J. Lepr22, 273–284 (1954). CASPubMed Google Scholar
Saporta, L. & Yuksel, A. Androgenic status in patients with lepromatous leprosy. Br. J. Urol.74, 221–224 (1994). ArticleCASPubMed Google Scholar
Leal, A. M. & Foss, N. T. Endocrine dysfunction in leprosy. Eur. J. Clin. Microbiol. Infect. Dis.28, 1–7 (2009). ArticleCASPubMed Google Scholar
Monot, M. et al. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nature Genet.41, 1282–1289 (2009). ArticleCASPubMed Google Scholar
Smith, D. G. & Guinto, R. S. Leprosy and fertility. Hum. Biol.50, 451–460 (1978). CASPubMed Google Scholar
Alter, A., Alcais, A., Abel, L. & Schurr, E. Leprosy as a genetic model for susceptibility to common infectious diseases. Hum. Genet.123, 227–235 (2008). ArticlePubMed Google Scholar
Shields, E. D., Russell, D. A. & Pericak-Vance, M. A. Genetic epidemiology of the susceptibility to leprosy. J. Clin. Invest.79, 1139–1143 (1987). ArticleCASPubMedPubMed Central Google Scholar
Boldsen, J. L. Leprosy in mediaeval Denmark — osteological and epidemiological analyses. Anthropol. Anz.67, 407–425 (2009). ArticlePubMed Google Scholar
World Health Organization. Global leprosy situation. Weekly Epidemiol. Record87, 317–328 [online], (2012).
Zhang, F. et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nature Genet.43, 1247–1251 (2011). ArticleCASPubMed Google Scholar
Wong, S. H., Hill, A. V., Vannberg, F. O. Genomewide association study of leprosy. N. Engl. J. Med.362, 1446–1447; author reply 1447–1448 (2010). ArticleCASPubMed Google Scholar
Johnson, C. M. et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J. Immunol.178, 7520–7524 (2007). ArticleCASPubMed Google Scholar
Wong, S. H. et al. Leprosy and the adaptation of human Toll-like receptor 1. PLoS Pathog.6, e1000979 (2010). This paper shows selection for a leprosy protective variant inTLR1in Europeans, which suggests a long host–pathogen relationship. ArticleCASPubMedPubMed Central Google Scholar
Barreiro, L. B. et al. Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet.5, e1000562 (2009). ArticleCASPubMedPubMed Central Google Scholar
Reiley, W. W. et al. Regulation of T cell development by the deubiquitylating enzyme CYLD. Nature Immunol.7, 411–417 (2006). ArticleCAS Google Scholar
Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature424, 797–801 (2003). ArticleCASPubMed Google Scholar
Hershberg, R. et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol.6, e311 (2008). ArticleCASPubMedPubMed Central Google Scholar
Moller, M. & Hoal, E. G. Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis90, 71–83 (2010). ArticleCASPubMed Google Scholar
Thye, T. et al. Common variants at 11p13 are associated with susceptibility to tuberculosis. Nature Genet.44, 257–259 (2012). ArticleCASPubMed Google Scholar
Gagneux, S. et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA103, 2869–2873 (2006). ArticleCASPubMedPubMed Central Google Scholar
World Health Organization. Global Tuberculosis Control 2011. WHO[online], (2011).
VandeWoude, S. & Apetrei, C. Going wild: lessons from naturally occurring T lymphotropic lentiviruses. Clin. Microbiol. Rev.19, 728–762 (2006). ArticleCASPubMedPubMed Central Google Scholar
Worobey, M. et al. Island biogeography reveals the deep history of SIV. Science329, 1487 (2010). ArticleCASPubMed Google Scholar
Liu, R. et al. Homozygous defect in HIV-1 co-receptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell86, 367–377 (1996). ArticleCASPubMed Google Scholar
Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science273, 1856–1862 (1996). ArticleCASPubMed Google Scholar
Stephens, J. C. et al. Dating the origin of the CCR5–_Δ_32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet.62, 1507–1515 (1998). ArticleCASPubMedPubMed Central Google Scholar
Thomas, R. et al. HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nature Genet.41, 1290–1294 (2009). ArticleCASPubMed Google Scholar
Lee, K. The global dimensions of cholera. Global Change Hum. Health2, 6–17 (2001). Article Google Scholar
Chowdhury, F. et al. Impact of rapid urbanization on the rates of infection by Vibrio cholerae O1 and enterotoxigenic Escherichia coli in Dhaka, Bangladesh. PLoS Negl. Trop. Dis5, e999 (2011). ArticlePubMedPubMed Central Google Scholar
Mosley, W. H., McCormack, W. M., Ahmed, A., Chowdhury, A. K. & Barui, R. K. Report of the 1966–1967 cholera vaccine field trial in rural East Pakistan. 2. Results of the serological surveys in the study population — the relationship of case rate to antibody titre and an estimate of the inapparent infection rate with Vibrio cholerae. Bull. World Health Organ.40, 187–197 (1969). CASPubMedPubMed Central Google Scholar
Glass, R. I. et al. Seroepidemiological studies of El Tor cholera in Bangladesh: association of serum antibody levels with protection. J. Infect. Dis.151, 236–242 (1985). ArticleCASPubMed Google Scholar
Karlsson, E. K. et al. Natural selection in a Bangladeshi population from the cholera-endemic Ganges River Delta. Sci. Transl. Med.5, 192ra86 (2013). This study uses selection for host resistance to historically localized pathogen to investigate immune response pathways. ArticlePubMedPubMed Central Google Scholar
Lee, P. H., O'Dushlaine, C., Thomas, B. & Purcell, S. M. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics28, 1797–1799 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hall, A. J. Noroviruses: the perfect human pathogens? J. Infect. Dis.205, 1622–1624 (2012). ArticlePubMed Google Scholar
Patel, M. M. et al. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg. Infect. Dis.14, 1224–1231 (2008). ArticlePubMedPubMed Central Google Scholar
Wertheim, J. O. & Kosakovsky Pond, S. L. Purifying selection can obscure the ancient age of viral lineages. Mol. Biol. Evol.28, 3355–3365 (2011). ArticleCASPubMedPubMed Central Google Scholar
Worobey, M., Bjork, A. & Wertheim, J. O. Point, counterpoint: the evolution of pathogenic viruses and their human hosts. Annu. Rev. Ecol. Evol. Syst.38, 515–540 (2007). Article Google Scholar
Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nature Med.9, 548–553 (2003). ArticleCASPubMed Google Scholar
Carlsson, B. et al. The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 Norovirus infection. PLoS ONE4, e5593 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nordgren, J., Kindberg, E., Lindgren, P.-E., Matussek, A. & Svensson, L. Norovirus gastroenteritis outbreak with a secretor-independent susceptibility pattern, Sweden. Emerg. Infecti. Diseases16, 81 (2010). ArticleCAS Google Scholar
Ferrer-Admetlla, A. et al. A natural history of FUT2 polymorphism in humans. Mol. Biol. Evol.26, 1993–2003 (2009). ArticleCASPubMed Google Scholar
Taubenberger, J. K. & Morens, D. M. Influenza revisited. Emerg. Infecti. Diseases12, 1 (2006). Article Google Scholar
Johnson, N. P. & Mueller, J. Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med.76, 105–115 (2002). ArticlePubMed Google Scholar
Albright, F. S., Orlando, P., Pavia, A. T., Jackson, G. G. & Cannon Albright, L. A. Evidence for a heritable predisposition to death due to influenza. J. Infect. Dis.197, 18–24 (2008). ArticlePubMed Google Scholar
Horby, P., Nguyen, N. Y., Dunstan, S. J. & Baillie, J. K. The role of host genetics in susceptibility to influenza: a systematic review. PLoS ONE7, e33180 (2012). ArticleCASPubMedPubMed Central Google Scholar
Brass, A. L. et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell139, 1243–1254 (2009). ArticlePubMedPubMed Central Google Scholar
Li, Y. et al. On the origin of smallpox: correlating variola phylogenics with historical smallpox records. Proc. Natl. Acad. Sci. USA104, 15787–15792 (2007). ArticleCASPubMedPubMed Central Google Scholar
Babkin, I. V. & Shelkunov, S. N. [Molecular evolution of poxviruses]. Genetika44, 1029–1044 (in Russian) (2008). CASPubMed Google Scholar
Esposito, J. J. et al. Genome sequence diversity and clues to the evolution of variola (smallpox) virus. Science313, 807–812 (2006). ArticlePubMed Google Scholar
Kennedy, R. B. et al. Genome-wide analysis of polymorphisms associated with cytokine responses in smallpox vaccine recipients. Hum. Genet.131, 1403–1421 (2012). ArticleCASPubMedPubMed Central Google Scholar
Barreiro, L. B. & Quintana-Murci, L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nature Rev. Genet.11, 17–30 (2010). This paper shows that pathogen-driven selection shaped the human genome. ArticleCASPubMed Google Scholar
Casto, A. M. & Feldman, M. W. Genome-wide association study SNPs in the human genome diversity project populations: does selection affect unlinked SNPs with shared trait associations? PLoS Genet.7, e1001266 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hu, X. & Daly, M. What have we learned from six years of GWAS in autoimmune diseases, and what is next? Curr. Opin. Immunol.24, 571–575 (2012). ArticleCASPubMed Google Scholar
Fumagalli, M. et al. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J. Exp. Med.206, 1395–1408 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sirota, M., Schaub, M. A., Batzoglou, S., Robinson, W. H. & Butte, A. J. Autoimmune disease classification by inverse association with SNP alleles. PLoS Genet.5, e1000792 (2009). ArticleCASPubMedPubMed Central Google Scholar
Schenk, M. et al. NOD2 triggers an interleukin-32 dependent human dendritic cell program in leprosy. Nature Med.18, 555–563 (2012). ArticleCASPubMed Google Scholar
Dube, C. et al. The prevalence of coeliac disease in average-risk and at risk western European populations: a systematic review. Gastroenterology128, S57–S67 (2005). ArticlePubMed Google Scholar
Catassi, C. et al. Why is coeliac disease endemic in the people of the Sahara? Lancet354, 647–648 (1999). ArticleCASPubMed Google Scholar
Zhernakova, A. et al. Evolutionary and functional analysis of coeliac risk loci reveals SH2B3 as a protective factor against bacterial infection. Am. J. Hum. Genet.86, 970–977 (2010). ArticleCASPubMedPubMed Central Google Scholar
Itan, Y., Powell, A., Beaumont, M. A., Burger, J. & Thomas, M. G. The origins of lactase persistence in Europe. PLoS Comput. Biol.5, e1000491 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kao, W. H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nature Genet.40, 1185–1192 (2008). ArticleCASPubMed Google Scholar
Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nature Genet.40, 1175–1184 (2008). ArticleCASPubMed Google Scholar
Sainz, J. et al. Inflammatory and immune response genes have significantly altered expression in schizophrenia. Mol. Psychiatry18, 1056–1057 (2013). ArticleCASPubMed Google Scholar
Onore, C., Careaga, M. & Ashwood, P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav. Immun.26, 383–392 (2012). ArticleCASPubMed Google Scholar
Spencer, C. C., Su, Z., Donnelly, P. & Marchini, J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet.5, e1000477 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mahasirimongkol, S. et al. Genome-wide association studies of tuberculosis in Asians identify distinct at risk locus for young tuberculosis. J. Hum. Genet.57, 363–367 (2012). ArticleCASPubMed Google Scholar
Petrovski, S. et al. Common human genetic variants and HIV-1 susceptibility: a genome-wide survey in a homogeneous African population. AIDS25, 513–518 (2011). ArticlePubMed Google Scholar
Pelak, K. et al. Host determinants of HIV-1 control in African Americans. J. Infect. Dis.201, 1141–1149 (2010). ArticleCASPubMed Google Scholar