Honjo, T., Muramatsu, M. & Fagarasan, S. AID: how does it aid antibody diversity? Immunity20, 659–668 (2004). CASPubMed Google Scholar
Neuberger, M. S. et al. Immunity through DNA deamination. Trends Biochem. Sci.28, 305–312 (2003). CASPubMed Google Scholar
Barre-Sinoussi, F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science220, 868–871 (1983). CASPubMed Google Scholar
Gallo, R. C. Historical essay. The early years of HIV/AIDS. Science298, 1728–1730 (2002). CASPubMed Google Scholar
Montagnier, L. Historical essay. A history of HIV discovery. Science298, 1727–1728 (2002). CASPubMed Google Scholar
Sheehy, A. M. et al. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature418, 646–650 (2002). A landmark study identifying human APOBEC3G as a potent inhibitor of Vif-deficient HIV-1 replication and as a functional target of the HIV-1 Vif protein. CASPubMed Google Scholar
Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics79, 285–296 (2002). CASPubMed Google Scholar
Teng, B., Burant, C. F. & Davidson, N. O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science260, 1816–1819 (1993). CASPubMed Google Scholar
Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature418, 99–103 (2002). This paper proposed the DNA-deamination model for AID-mediated immunoglobin-gene diversification and showed that AID can trigger C/G to T/A transition mutations through a uracil intermediate. CASPubMed Google Scholar
Harris, R. S., Petersen-Mahrt, S. K. & Neuberger, M. S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell10, 1247–1253 (2002). This paper was the first to show that APOBEC3G was capable of DNA cytosine deamination. ArticleCASPubMed Google Scholar
Pathak, V. K. & Temin, H. M. Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc. Natl Acad. Sci. USA87, 6019–6023 (1990). CASPubMedPubMed Central Google Scholar
Janini, M. et al. Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4+ T cells. J. Virol.75, 7973–7986 (2001). This paper provided a systematic analysis and discussion of HIV-1 G to A hypermutation in patient-derived blood cells. The HIV-1 G to A hypermutations occurred exclusively in GA and GG dinucleotide contexts, with GA predominating. CASPubMedPubMed Central Google Scholar
Harris, R. S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell113, 803–809 (2003). CASPubMed Google Scholar
Lecossier, D. et al. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science300, 1112 (2003). CASPubMed Google Scholar
Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature424, 99–103 (2003). ArticleCASPubMed Google Scholar
Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature424, 94–98 (2003). References 16–19 showed that APOBEC3G is a potent retroviral cDNA deaminase, capable of triggering high levels of retroviral hypermutation. Reference 16 was also the first to report the single-strand-specific DNA-cytosine-deaminase activity of APOBEC3Gin vitro. CASPubMedPubMed Central Google Scholar
Beale, R. C. et al. Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J. Mol. Biol.337, 585–596 (2004). CASPubMed Google Scholar
Yu, Q. et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nature Struct. Mol. Biol.11, 435–442 (2004). CAS Google Scholar
Betts, L. et al. Cytidine deaminase. The 2.3 Å crystal structure of an enzyme: transition-state analog complex. J. Mol. Biol.235, 635–656 (1994). CASPubMed Google Scholar
Johansson, E. et al. Crystal structure of the tetrameric cytidine deaminase from Bacillus subtilis at 2.0 Å resolution. Biochemistry41, 2563–2570 (2002). CASPubMed Google Scholar
Ko, T. P. et al. Crystal structure of yeast cytosine deaminase. Insights into enzyme mechanism and evolution. J. Biol. Chem.278, 19111–19117 (2003). CASPubMed Google Scholar
Xie, K. et al. The structure of a yeast RNA-editing deaminase provides insight into the fold and function of activation-induced deaminase and APOBEC-1. Proc. Natl Acad. Sci. USA101, 8114–8119 (2004). CASPubMedPubMed Central Google Scholar
Shindo, K. et al. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J. Biol. Chem.278, 44412–44416 (2003). CASPubMed Google Scholar
MacGinnitie, A. J., Anant, S. & Davidson, N. O. Mutagenesis of apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, reveals distinct domains that mediate cytosine nucleoside deaminase, RNA binding, and RNA editing activity. J. Biol. Chem.270, 14768–14775 (1995). CASPubMed Google Scholar
Navaratnam, N. et al. Evolutionary origins of apoB mRNA editing: catalysis by a cytidine deaminase that has acquired a novel RNA-binding motif at its active site. Cell81, 187–195 (1995). CASPubMed Google Scholar
Navaratnam, N. et al. Escherichia coli cytidine deaminase provides a molecular model for apoB RNA editing and a mechanism for RNA substrate recognition. J. Mol. Biol.275, 695–714 (1998). CASPubMed Google Scholar
Ta, V. T. et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nature Immunol.4, 843–848 (2003). CAS Google Scholar
Svarovskaia, E. S. et al. Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J. Biol. Chem.279, 35822–35828 (2004). This paper and references 36 and 37 are beginning to shed light on the intriguing mechanism of how APOBEC3G is incorporated into the HIV-1 virion, through Gag, RNA and/or a Gag–RNA complex. CASPubMed Google Scholar
Stopak, K. et al. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol. Cell12, 591–601 (2003). CASPubMed Google Scholar
Marin, M. et al. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nature Med.9, 1398–1403 (2003). CASPubMed Google Scholar
Lellek, H. et al. Purification and molecular cloning of a novel essential component of the apolipoprotein B mRNA editing enzyme-complex. J. Biol. Chem.275, 19848–19856 (2000). CASPubMed Google Scholar
Mehta, A. et al. Molecular cloning of Apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol.20, 1846–1854 (2000). CASPubMedPubMed Central Google Scholar
Alce, T. M. & Popik, W. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J. Biol. Chem.279, 34083–34086 (2004). CASPubMed Google Scholar
Cen, S. et al. The interaction between HIV-1 Gag and APOBEC3G. J. Biol. Chem.279, 33177–33184 (2004). CASPubMed Google Scholar
Li, J., Potash, M. J. & Volsky, D. J. Functional domains of APOBEC3G required for antiviral activity. J. Cell. Biochem.92, 560–572 (2004). CASPubMed Google Scholar
Berkowitz, R. D. et al. Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo. J. Virol.69, 6445–6456 (1995). CASPubMedPubMed Central Google Scholar
Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell114, 21–31 (2003). CASPubMed Google Scholar
Bishop, K. N. et al. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr. Biol.14, 1392–1396 (2004). CASPubMed Google Scholar
Wiegand, H. L. et al. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J.23, 2451–2458 (2004). CASPubMedPubMed Central Google Scholar
Zheng, Y. H. et al. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J. Virol.78, 6073–6076 (2004). References 41–43 and 58 have shown that some other APOBEC-family members (in addition to APOBEC3G) can also function to restrict retroviral infection. An important implication is that APOBEC3F might be the dominant restrictor of HIV-1 infectionin vivo, with APOBEC3G having a key supporting role. CASPubMedPubMed Central Google Scholar
Gabuzda, D. H. et al. Role of Vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol.66, 6489–6495 (1992). CASPubMedPubMed Central Google Scholar
von Schwedler, U. et al. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J. Virol.67, 4945–4955 (1993). CASPubMedPubMed Central Google Scholar
Conticello, S. G., Harris, R. S. & Neuberger, M. S. The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr. Biol.13, 2009–2013 (2003). CASPubMed Google Scholar
Sheehy, A. M., Gaddis, N. C. & Malim, M. H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nature Med.9, 1404–1407 (2003). CASPubMed Google Scholar
Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif–Cul5–SCF complex. Science302, 1056–1060 (2003). This paper revealed that HIV-1 Vif functions to recruit a ubiquitin-ligase complex to accomplish the degradation of APOBEC3G. CASPubMed Google Scholar
Kao, S. et al. The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J. Virol.77, 11398–11407 (2003). CASPubMedPubMed Central Google Scholar
Bogerd, H. P. et al. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc. Natl Acad. Sci. USA101, 3770–3774 (2004). CASPubMedPubMed Central Google Scholar
Mangeat, B. et al. A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J. Biol. Chem.279, 14481–14483 (2004). CASPubMed Google Scholar
Schrofelbauer, B., Chen, D. & Landau, N. R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl Acad. Sci. USA101, 3927–3932 (2004). PubMedPubMed Central Google Scholar
Xu, H. et al. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc. Natl Acad. Sci. USA101, 5652–5657 (2004). CASPubMedPubMed Central Google Scholar
Schrofelbauer, B., Yu, Q. & Landau, N. R. New insights into the role of Vif in HIV-1 replication. AIDS Rev.6, 34–39 (2004). PubMed Google Scholar
Navarro, F. & Landau, N. R. Recent insights into HIV-1 Vif. Curr. Opin. Immunol.16, 477–482 (2004). CASPubMed Google Scholar
Rose, K. M. et al. The viral infectivity factor (Vif) of HIV-1 unveiled. Trends Mol. Med.10, 291–297 (2004). CASPubMed Google Scholar
Liddament, M. T. et al. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr. Biol.14, 1385–1391 (2004). CASPubMed Google Scholar
Vartanian, J. P., Sommer, P. & Wain-Hobson, S. Death and the retrovirus. Trends Mol. Med.9, 409–413 (2003). CASPubMed Google Scholar
Turelli, P. et al. Response to comment on 'Inhibition of hepatitis B virus replication by APOBEC3G'. Science305, 1403B (2004). Google Scholar
Rosler, C. et al. Comment on 'Inhibition of hepatitis B virus replication by APOBEC3G'. Science305, 1403; author reply 1403 (2004). PubMed Google Scholar
Turelli, P. et al. Inhibition of hepatitis B virus replication by APOBEC3G. Science303, 1829 (2004). References 60–62 show that APOBEC3G can inhibit replication of HBV, possibly through both deamination-dependent and -independent mechanisms. PubMed Google Scholar
Muto, T. et al. Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics68, 85–88 (2000). CASPubMed Google Scholar
Espinosa, R. et al. Assignment of the gene encoding the human apolipoprotein B mRNA editing enzyme (APOBEC1) to chromosome 12p13.1. Genomics24, 414–415 (1994). CASPubMed Google Scholar
Anant, S. et al. ARCD-1, an apobec-1-related cytidine deaminase, exerts a dominant negative effect on C to U RNA editing. Am. J. Physiol. Cell Physiol.281, C1904–C1916 (2001). CASPubMed Google Scholar
Liao, W. et al. APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family. Biochem. Biophys. Res. Commun.260, 398–404 (1999). CASPubMed Google Scholar
Pham, P. et al. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature424, 103–107 (2003). CASPubMed Google Scholar
Bishop, K. N. et al. APOBEC-mediated editing of viral RNA. Science305, 645 (2004). This paper has opened the door to the possibility that APOBEC proteins might also function to restrict infection by RNA viruses. It showed that rat APOBEC1 can edit HIV-1 RNA, as well as deaminate its cDNA. CASPubMed Google Scholar
Ramiro, A. R. et al. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nature Immunol.4, 452–456 (2003). CAS Google Scholar
Wedekind, J. E. et al. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet.19, 207–216 (2003). CASPubMed Google Scholar
Zhang, J. & Webb, D. M. Rapid evolution of primate antiviral enzyme APOBEC3G. Hum. Mol. Genet.13, 1785–1791 (2004). CASPubMed Google Scholar
Sawyer, S. L., Emerman, M. & Malik, H. S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol.2, e275 (2004). PubMedPubMed Central Google Scholar
Harris, R. S. et al. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol.12, 435–438 (2002). CASPubMed Google Scholar
Arakawa, H., Hauschild, J. & Buerstedde, J. M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science295, 1301–1306 (2002). CASPubMed Google Scholar
Saunders, H. L. & Magor, B. G. Cloning and expression of the AID gene in the channel catfish. Dev. Comp. Immunol.28, 657–663 (2004). CASPubMed Google Scholar
Nakamuta, M. et al. Complete phenotypic characterization of Apobec-1 knockout mice with a wild-type genetic background and a human apolipoprotein B transgenic background, and restoration of apolipoprotein B mRNA editing by somatic gene transfer of Apobec-1. J. Biol. Chem.271, 25981–25988 (1996). CASPubMed Google Scholar
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell102, 553–563 (2000). CASPubMed Google Scholar
Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell102, 565–575 (2000). References 77 and 78 show that AID is required for immunoglobulin-gene class-switch recombination and somatic hypermutation. CASPubMed Google Scholar
Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem.274, 18470–18476 (1999). A landmark paper that identifies AID as a B-cell-specific factor, which could be upregulated in cells induced to undergo class-switch recombination. CASPubMed Google Scholar
Yu, K., Huang, F. T. & Lieber, M. R. DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J. Biol. Chem.279, 6496–6500 (2004). CASPubMed Google Scholar
Sohail, A. et al. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res.31, 2990–2994 (2003). CASPubMedPubMed Central Google Scholar
Dickerson, S. K. et al. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med.197, 1291–1296 (2003). CASPubMedPubMed Central Google Scholar
Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature422, 726–730 (2003). CASPubMed Google Scholar
Bransteitter, R. et al. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA100, 4102–4107 (2003). CASPubMedPubMed Central Google Scholar
Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science286, 1897–1905 (1999). CASPubMed Google Scholar
Imai, K. et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nature Immunol.4, 1023–1028 (2003). CAS Google Scholar
Rada, C. et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol.12, 1748–1755 (2002). CASPubMed Google Scholar
Di Noia, J. & Neuberger, M. S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature419, 43–48 (2002). CASPubMed Google Scholar
Di Noia, J. M. & Neuberger, M. S. Immunoglobulin gene conversion in chicken DT40 cells largely proceeds through an abasic site intermediate generated by excision of the uracil produced by AID-mediated deoxycytidine deamination. Eur. J. Immunol.34, 504–508 (2004). CASPubMed Google Scholar
Hochegger, H., Sonoda, E. & Takeda, S. Post-replication repair in DT40 cells: translesion polymerases versus recombinases. Bioessays26, 151–158 (2004). CASPubMed Google Scholar
Bertocci, B. et al. DNA polymerases μ and λ are dispensable for Ig gene hypermutation. J. Immunol.168, 3702–3706 (2002). CASPubMed Google Scholar
Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature414, 660–665 (2001). CASPubMedPubMed Central Google Scholar
Lahdesmaki, A. et al. Delineation of the role of the Mre11 complex in class switch recombination. J. Biol. Chem.279, 16479–16487 (2004). PubMed Google Scholar
Begum, N. A. et al. Uracil DNA glycosylase activity is dispensable for immunoglobulin class switch. Science305, 1160–1163 (2004). CASPubMed Google Scholar
Galagan, J. E. & Selker, E. U. RIP: the evolutionary cost of genome defense. Trends Genet.20, 417–423 (2004). CASPubMed Google Scholar
Chester, A. et al. RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim. Biophys. Acta1494, 1–13 (2000). CASPubMed Google Scholar
Anant, S. & Davidson, N. O. Molecular mechanisms of apolipoprotein B mRNA editing. Curr. Opin. Lipidol.12, 159–165 (2001). CASPubMed Google Scholar
Petersen-Mahrt, S. K. & Neuberger, M. S. In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J. Biol. Chem.278, 19583–19586 (2003). CASPubMed Google Scholar
Yamanaka, S. et al. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc. Natl Acad. Sci. USA92, 8483–8487 (1995). CASPubMedPubMed Central Google Scholar
Yamanaka, S. et al. Hyperediting of multiple cytidines of apolipoprotein B mRNA by APOBEC-1 requires auxiliary protein(s) but not a mooring sequence motif. J. Biol. Chem.271, 11506–11510 (1996). CASPubMed Google Scholar
Kunkel, T. A. & Diaz, M. Enzymatic cytosine deamination: friend and foe. Mol. Cell10, 962–963 (2002). CASPubMed Google Scholar
Loeb, L. A. et al. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc. Natl Acad. Sci. USA96, 1492–1497 (1999). CASPubMedPubMed Central Google Scholar
Harris, R. S. et al. DNA deamination: not just a trigger for antibody diversification but also a mechanism for defense against retroviruses. Nature Immunol.4, 641–643 (2003). CAS Google Scholar
Nei, M. & Glazko, G. V. The Wilhelmine E. Key 2001 Invitational Lecture. Estimation of divergence times for a few mammalian and several primate species. J. Hered.93, 157–164 (2002). CASPubMed Google Scholar
Madsen, P. et al. Psoriasis upregulated phorbolin-1 shares structural but not functional similarity to the mRNA-editing protein Apobec-1. J. Invest. Dermatol.113, 162–169 (1999). CASPubMed Google Scholar