NFAT proteins: key regulators of T-cell development and function (original) (raw)
Shaw, J. P. et al. Identification of a putative regulator of early T cell activation genes. Science241, 202–205 (1988). ArticleCASPubMed Google Scholar
Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol.15, 707–747 (1997). ArticleCASPubMed Google Scholar
Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev.17, 2205–2232 (2003). ArticleCASPubMed Google Scholar
Graef, I. A., Chen, F. & Crabtree, G. R. NFAT signaling in vertebrate development. Curr. Opin. Genet. Dev.11, 505–512 (2001). ArticleCASPubMed Google Scholar
Crabtree, G. R. & Olson, E. N. NFAT signaling: choreographing the social lives of cells. Cell109, S67–S79 (2002). References 3 and 5 provide an excellent overview of the regulation of NFAT proteins and their function in different organs and tissues. ArticleCASPubMed Google Scholar
Kiani, A. et al. Expression and regulation of NFAT (nuclear factors of activated T cells) in human CD34+ cells: down-regulation upon myeloid differentiation. J. Leukoc. Biol.76, 1057–1065 (2004). ArticleCASPubMed Google Scholar
Lopez-Rodriguez, C., Aramburu, J., Rakeman, A. S. & Rao, A. NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc. Natl Acad. Sci. USA96, 7214–7219 (1999). ArticleCASPubMedPubMed Central Google Scholar
Miyakawa, H., Woo, S. K., Dahl, S. C., Handler, J. S. & Kwon, H. M. Tonicity-responsive enhancer binding protein, a Rel-like protein that stimulates transcription in response to hypertonicity. Proc. Natl Acad. Sci. USA96, 2538–2542 (1999). ArticleCASPubMedPubMed Central Google Scholar
Stroud, J. C., Lopez-Rodriguez, C., Rao, A. & Chen, L. Structure of a TonEBP–DNA complex reveals DNA encircled by a transcription factor. Nature Struct. Biol.9, 90–94 (2002). ArticleCASPubMed Google Scholar
Lopez-Rodriguez, C. et al. Bridging the NFAT and NF-κB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity15, 47–58 (2001). ArticleCASPubMed Google Scholar
Go, W. Y., Liu, X., Roti, M. A., Liu, F. & Ho, S. N. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc. Natl Acad. Sci. USA101, 10673–10678 (2004). ArticleCASPubMedPubMed Central Google Scholar
Luo, C. et al. Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes. Mol. Cell. Biol.16, 3955–3966 (1996). ArticleCASPubMedPubMed Central Google Scholar
Imamura, R. et al. Carboxyl-terminal 15-amino acid sequence of NFATx1 is possibly created by tissue-specific splicing and is essential for transactivation activity in T cells. J. Immunol.161, 3455–3463 (1998). CASPubMed Google Scholar
Park, J., Takeuchi, A. & Sharma, S. Characterization of a new isoform of the NFAT (nuclear factor of activated T cells) gene family member NFATc. J. Biol. Chem.271, 20914–20921 (1996). ArticleCASPubMed Google Scholar
Chuvpilo, S. et al. Multiple NF-ATc isoforms with individual transcriptional properties are synthesized in T lymphocytes. J. Immunol.162, 7294–7301 (1999). CASPubMed Google Scholar
Chen, L., Glover, J. N., Hogan, P. G., Rao, A. & Harrison, S. C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature392, 42–48 (1998). ArticleCASPubMed Google Scholar
Feske, S., Okamura, H., Hogan, P. G. & Rao, A. Ca2+/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun.311, 1117–1132 (2003). ArticleCASPubMed Google Scholar
Garcia-Cozar, F. J. et al. Two-site interaction of nuclear factor of activated T cells with activated calcineurin. J. Biol. Chem.273, 23877–23883 (1998). ArticleCASPubMed Google Scholar
Aramburu, J. et al. Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol. Cell1, 627–637 (1998). ArticleCASPubMed Google Scholar
Aramburu, J. et al. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science285, 2129–2133 (1999). This paper describes the identification of a selective peptide that can specifically inhibit NFAT–calcineurin interactions and block cytokine expression by T cells. ArticleCASPubMed Google Scholar
Li, H., Rao, A. & Hogan, P. G. Structural delineation of the calcineurin–NFAT interaction and its parallels to PP1 targeting interactions. J. Mol. Biol.342, 1659–1674 (2004). ArticleCASPubMed Google Scholar
Liu, J., Masuda, E. S., Tsuruta, L., Arai, N. & Arai, K. Two independent calcineurin-binding regions in the N-terminal domain of murine NF-ATx1 recruit calcineurin to murine NF-ATx1. J. Immunol.162, 4755–4761 (1999). CASPubMed Google Scholar
Park, S., Uesugi, M. & Verdine, G. L. A second calcineurin binding site on the NFAT regulatory domain. Proc. Natl Acad. Sci. USA97, 7130–7135 (2000). ArticleCASPubMedPubMed Central Google Scholar
Liu, J., Arai, K. & Arai, N. Inhibition of NFATx activation by an oligopeptide: disrupting the interaction of NFATx with calcineurin. J. Immunol.167, 2677–2687 (2001). ArticleCASPubMed Google Scholar
Coghlan, V. M. et al. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science267, 108–111 (1995). ArticleCASPubMed Google Scholar
Sun, L. et al. Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity8, 703–711 (1998). ArticleCASPubMed Google Scholar
Kashishian, A. et al. AKAP79 inhibits calcineurin through a site distinct from the immunophilin-binding region. J. Biol. Chem.273, 27412–27419 (1998). ArticleCASPubMed Google Scholar
Klauck, T. M. et al. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science271, 1589–1592 (1996). ArticleCASPubMed Google Scholar
Rothermel, B. et al. A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J. Biol. Chem.275, 8719–8725 (2000). ArticleCASPubMed Google Scholar
Esau, C. et al. Deletion of calcineurin and myocyte enhancer factor 2 (MEF2) binding domain of Cabin1 results in enhanced cytokine gene expression in T cells. J. Exp. Med.194, 1449–1459 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ryeom, S., Greenwald, R. J., Sharpe, A. H. & McKeon, F. The threshold pattern of calcineurin-dependent gene expression is altered by loss of the endogenous inhibitor calcipressin. Nature Immunol.4, 874–881 (2003). ArticleCAS Google Scholar
Okamura, H. et al. Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol. Cell6, 539–550 (2000). This study describes the mechanism of NFAT1 activation by the concerted dephosphorylation of several serines, which induce a conformational switch that exposes a nuclear-localization signal. ArticleCASPubMed Google Scholar
Beals, C. R., Sheridan, C. M., Turck, C. W., Gardner, P. & Crabtree, G. R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science275, 1930–1934 (1997). ArticleCASPubMed Google Scholar
Chow, C. W., Rincon, M., Cavanagh, J., Dickens, M. & Davis, R. J. Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science278, 1638–1641 (1997). ArticleCASPubMed Google Scholar
Chow, C. W., Dong, C., Flavell, R. A. & Davis, R. J. c-Jun NH2-terminal kinase inhibits targeting of the protein phosphatase calcineurin to NFATc1. Mol. Cell. Biol.20, 5227–5234 (2000). ArticleCASPubMedPubMed Central Google Scholar
Okamura, H. et al. A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol. Cell. Biol.24, 4184–4195 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gomez del Arco, P., Martinez-Martinez, S., Maldonado, J. L., Ortega-Perez, I. & Redondo, J. M. A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. J. Biol. Chem.275, 13872–13878 (2000). ArticleCASPubMed Google Scholar
Zhu, J. et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell93, 851–861 (1998). References 33, 36 and 38 identify GSK3 and CK1 as NFAT kinases that regulate nuclear import and/or export of NFAT proteins. ArticleCASPubMed Google Scholar
Yang, T. T., Xiong, Q., Enslen, H., Davis, R. J. & Chow, C. W. Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. Mol. Cell. Biol.22, 3892–3904 (2002). ArticleCASPubMedPubMed Central Google Scholar
Beals, C. R., Clipstone, N. A., Ho, S. N. & Crabtree, G. R. Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev.11, 824–834 (1997). ArticleCASPubMed Google Scholar
Chuvpilo, S. et al. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity10, 261–269 (1999). ArticleCASPubMed Google Scholar
Zhou, B. et al. Regulation of the murine Nfatc1 gene by NFATc2. J. Biol. Chem.277, 10704–10711 (2002). ArticleCASPubMed Google Scholar
Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell109, 719–731 (2002). This study shows that, in the absence of AP1, calcium–calcineurin–NFAT signals control the activation of a programme of gene expression that induces T-cell inactivation. ArticleCASPubMed Google Scholar
Barlic, J. et al. Interleukin (IL)-15 and IL-2 reciprocally regulate expression of the chemokine receptor CX3CR1 through selective NFAT1- and NFAT2-dependent mechanisms. J. Biol. Chem.279, 48520–48534 (2004). ArticleCASPubMed Google Scholar
Diehl, S. et al. Induction of NFATc2 expression by interleukin 6 promotes T helper type 2 differentiation. J. Exp. Med.196, 39–49 (2002). ArticleCASPubMedPubMed Central Google Scholar
Terui, Y., Saad, N., Jia, S., McKeon, F. & Yuan, J. Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J. Biol. Chem.279, 28257–28265 (2004). ArticleCASPubMed Google Scholar
Stroud, J. C. & Chen, L. Structure of NFAT bound to DNA as a monomer. J. Mol. Biol.334, 1009–1022 (2003). ArticleCASPubMed Google Scholar
Macian, F., Lopez-Rodriguez, C. & Rao, A. Partners in transcription: NFAT and AP-1. Oncogene20, 2476–2489 (2001). ArticleCASPubMed Google Scholar
Jain, J., McCaffrey, P. G., Valge-Archer, V. E. & Rao, A. Nuclear factor of activated T cells contains Fos and Jun. Nature356, 801–804 (1992). This paper reports, for the first time, that the nuclear component that interacts with NFAT proteins in activated T cells is AP1. ArticleCASPubMed Google Scholar
Macian, F., Garcia-Rodriguez, C. & Rao, A. Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO J.19, 4783–4795 (2000). ArticleCASPubMedPubMed Central Google Scholar
Palacios, E. H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene23, 7990–8000 (2004). ArticleCASPubMed Google Scholar
Wulfing, C., Sjaastad, M. D. & Davis, M. M. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl Acad. Sci. USA95, 6302–6307 (1998). ArticleCASPubMedPubMed Central Google Scholar
Perez, O. D. et al. Leukocyte functional antigen 1 lowers T cell activation thresholds and signaling through cytohesin-1 and Jun-activating binding protein 1. Nature Immunol.4, 1083–1092 (2003). ArticleCAS Google Scholar
Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nature Rev. Immunol.3, 939–951 (2003). ArticleCAS Google Scholar
Diehn, M. et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc. Natl Acad. Sci. USA99, 11796–11801 (2002). ArticleCASPubMedPubMed Central Google Scholar
Appleman, L. J., van Puijenbroek, A. A., Shu, K. M., Nadler, L. M. & Boussiotis, V. A. CD28 costimulation mediates down-regulation of p27_kip1_ and cell cycle progression by activation of the PI3K/PKB signaling pathway in primary human T cells. J. Immunol.168, 2729–2736 (2002). ArticleCASPubMed Google Scholar
Wang, D. et al. CD3/CD28 costimulation-induced NF-κB activation is mediated by recruitment of protein kinase C-q, Bcl10, and IκB kinase β to the immunological synapse through CARMA1. Mol. Cell. Biol.24, 164–171 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jun, J. E. et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity18, 751–762 (2003). ArticleCASPubMed Google Scholar
Bodor, J. & Habener, J. F. Role of transcriptional repressor ICER in cyclic AMP-mediated attenuation of cytokine gene expression in human thymocytes. J. Biol. Chem.273, 9544–9551 (1998). ArticleCASPubMed Google Scholar
Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nature Immunol.3, 643–651 (2002). This study shows that NFAT1 binds specifically to theIfn-γpromoter in TH1 cells and to theIl-4promoter in TH2 cells, where it cooperates with lineage-specific factors. ArticleCAS Google Scholar
Decker, E. L. et al. Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res.31, 911–921 (2003). ArticleCASPubMedPubMed Central Google Scholar
Duncliffe, K. N., Bert, A. G., Vadas, M. A. & Cockerill, P. N. A T cell-specific enhancer in the interleukin-3 locus is activated cooperatively by Oct and NFAT elements within a DNase I-hypersensitive site. Immunity6, 175–185 (1997). ArticleCASPubMed Google Scholar
Ho, I. C., Hodge, M. R., Rooney, J. W. & Glimcher, L. H. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell85, 973–983 (1996). ArticleCASPubMed Google Scholar
Iacobelli, M., Wachsman, W. & McGuire, K. L. Repression of IL-2 promoter activity by the novel basic leucine zipper p21SNFT protein. J. Immunol.165, 860–868 (2000). ArticleCASPubMed Google Scholar
Lee, D. U., Avni, O., Chen, L. & Rao, A. A distal enhancer in the interferon-γ (IFN-γ) locus revealed by genome sequence comparison. J. Biol. Chem.279, 4802–4810 (2004). ArticleCASPubMed Google Scholar
Rengarajan, J. et al. Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J. Exp. Med.195, 1003–1012 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yang, T. T. & Chow, C. W. Transcription cooperation by NFAT•C/EBP composite enhancer complex. J. Biol. Chem.278, 15874–15885 (2003). ArticleCASPubMed Google Scholar
Yang, X. Y. et al. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor γ (PPARγ) agonists. PPARγ co-association with transcription factor NFAT. J. Biol. Chem.275, 4541–4544 (2000). ArticleCASPubMed Google Scholar
Youn, H. D., Chatila, T. A. & Liu, J. O. Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J.19, 4323–4331 (2000). ArticleCASPubMedPubMed Central Google Scholar
Giffin, M. J. et al. Structure of NFAT1 bound as a dimer to the HIV-1 LTRκB element. Nature Struct. Biol.10, 800–806 (2003). ArticleCASPubMed Google Scholar
Jin, L. et al. An asymmetric NFAT1 dimer on a pseudo-palindromic κB-like DNA site. Nature Struct. Biol.10, 807–811 (2003). ArticleCASPubMed Google Scholar
Chang, C. P. et al. A field of myocardial–endocardial NFAT signaling underlies heart valve morphogenesis. Cell118, 649–663 (2004). ArticleCASPubMed Google Scholar
Muller, C. W. & Harrison, S. C. The structure of the NF-κB p50:DNA-complex: a starting point for analyzing the Rel family. FEBS Lett.369, 113–117 (1995). ArticleCASPubMed Google Scholar
Timmerman, L. A. et al. Redundant expression but selective utilization of nuclear factor of activated T cells family members. J. Immunol.159, 2735–2740 (1997). CASPubMed Google Scholar
Chuvpilo, S. et al. Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity16, 881–895 (2002). This paper describes a property of NFAT2A, the only autoregulated NFAT isoform, in T cells. ArticleCASPubMed Google Scholar
Hodge, M. R. et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity4, 397–405 (1996). ArticleCASPubMed Google Scholar
Xanthoudakis, S. et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science272, 892–895 (1996). ArticleCASPubMed Google Scholar
Yoshida, H. et al. The transcription factor NF-ATc1 regulates lymphocyte proliferation and TH2 cytokine production. Immunity8, 115–124 (1998). ArticleCASPubMed Google Scholar
Ranger, A. M. et al. Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NF-ATc. Immunity8, 125–134 (1998). ArticleCASPubMed Google Scholar
Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of T cells. Annu. Rev. Immunol.21, 139–176 (2003). ArticleCASPubMed Google Scholar
von Boehmer, H. et al. Thymic selection revisited: how essential is it? Immunol. Rev.191, 62–78 (2003). ArticleCASPubMed Google Scholar
Aifantis, I., Gounari, F., Scorrano, L., Borowski, C. & von Boehmer, H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nature Immunol.2, 403–409 (2001). ArticleCAS Google Scholar
Jenkins, M. K., Schwartz, R. H. & Pardoll, D. M. Effects of cyclosporine A on T cell development and clonal deletion. Science241, 1655–1658 (1988). ArticleCASPubMed Google Scholar
Gao, E. K., Lo, D., Cheney, R., Kanagawa, O. & Sprent, J. Abnormal differentiation of thymocytes in mice treated with cyclosporin A. Nature336, 176–179 (1988). ArticleCASPubMed Google Scholar
Bueno, O. F., Brandt, E. B., Rothenberg, M. E. & Molkentin, J. D. Defective T cell development and function in calcineurin Aβ-deficient mice. Proc. Natl Acad. Sci. USA99, 9398–9403 (2002). ArticleCASPubMedPubMed Central Google Scholar
Neilson, J. R., Winslow, M. M., Hur, E. M. & Crabtree, G. R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity20, 255–266 (2004). ArticleCASPubMed Google Scholar
Hayden-Martinez, K., Kane, L. P. & Hedrick, S. M. Effects of a constitutively active form of calcineurin on T cell activation and thymic selection. J. Immunol.165, 3713–3721 (2000). ArticleCASPubMed Google Scholar
Oukka, M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity9, 295–304 (1998). ArticleCASPubMed Google Scholar
Amasaki, Y. et al. A constitutively nuclear form of NFATx shows efficient transactivation activity and induces differentiation of CD4+CD8+ T cells. J. Biol. Chem.277, 25640–25648 (2002). ArticleCASPubMed Google Scholar
Amasaki, Y., Masuda, E. S., Imamura, R., Arai, K. & Arai, N. Distinct NFAT family proteins are involved in the nuclear NFAT–DNA binding complexes from human thymocyte subsets. J. Immunol.160, 2324–2333 (1998). CASPubMed Google Scholar
Ranger, A. M., Oukka, M., Rengarajan, J. & Glimcher, L. H. Inhibitory function of two NFAT family members in lymphoid homeostasis and TH2 development. Immunity9, 627–635 (1998). ArticleCASPubMed Google Scholar
Rengarajan, J., Tang, B. & Glimcher, L. H. NFATc2 and NFATc3 regulate TH2 differentiation and modulate TCR-responsiveness of naive TH2 cells. Nature Immunol.3, 48–54 (2002). ArticleCAS Google Scholar
Schuh, K. et al. Retarded thymic involution and massive germinal center formation in NF-ATp-deficient mice. Eur. J. Immunol.28, 2456–2466 (1998). ArticleCASPubMed Google Scholar
Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol.2, 933–944 (2002). ArticleCAS Google Scholar
Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity9, 765–775 (1998). ArticleCASPubMed Google Scholar
Ansel, K. M., Lee, D. U. & Rao, A. An epigenetic view of helper T cell differentiation. Nature Immunol.4, 616–623 (2003). ArticleCAS Google Scholar
Szabo, S. J., Sullivan, B. M., Peng, S. L. & Glimcher, L. H. Molecular mechanisms regulating TH1 immune responses. Annu. Rev. Immunol.21, 713–758 (2003). ArticleCASPubMed Google Scholar
Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity12, 643–652 (2000). This study identifies TH2-cell-specific binding of NFAT1 to sites in the 3′ enhancer of theIl-4gene. ArticleCASPubMed Google Scholar
Ansel, K. M. et al. Deletion of a conserved Il4 silencer impairs T helper type 1-mediated immunity. Nature Immunol.5, 1251–1259 (2004). ArticleCAS Google Scholar
Im, S. H., Hueber, A., Monticelli, S., Kang, K. H. & Rao, A. Chromatin-level regulation of the IL10 gene in T cells. J. Biol. Chem.279, 46818–46825 (2004). ArticleCASPubMed Google Scholar
Kiani, A., Viola, J. P., Lichtman, A. H. & Rao, A. Down-regulation of IL-4 gene transcription and control of TH2 cell differentiation by a mechanism involving NFAT1. Immunity7, 849–860 (1997). ArticleCASPubMed Google Scholar
Kiani, A. et al. Regulation of interferon-γ gene expression by nuclear factor of activated T cells. Blood98, 1480–1488 (2001). ArticleCASPubMed Google Scholar
Monticelli, S. & Rao, A. NFAT1 and NFAT2 are positive regulators of IL-4 gene transcription. Eur. J. Immunol.32, 2971–2978 (2002). ArticleCASPubMed Google Scholar
Porter, C. M. & Clipstone, N. A. Sustained NFAT signaling promotes a TH1-like pattern of gene expression in primary murine CD4+ T cells. J. Immunol.168, 4936–4945 (2002). ArticleCASPubMed Google Scholar
Nurieva, R. I. et al. Transcriptional regulation of TH2 differentiation by inducible costimulator. Immunity18, 801–811 (2003). ArticleCASPubMed Google Scholar
Riley, J. L. et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc. Natl Acad. Sci. USA99, 11790–11795 (2002). ArticleCASPubMedPubMed Central Google Scholar
Teague, T. K. et al. Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc. Natl Acad. Sci. USA96, 12691–12696 (1999). ArticleCASPubMedPubMed Central Google Scholar
Feske, S., Draeger, R., Peter, H. H., Eichmann, K. & Rao, A. The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T cells. J. Immunol.165, 297–305 (2000). ArticleCASPubMed Google Scholar
Peng, S. L., Gerth, A. J., Ranger, A. M. & Glimcher, L. H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity14, 13–20 (2001). This study shows that NFAT1 and NFAT2 are necessary for T-cell activation and cytokine production. ArticleCASPubMed Google Scholar
Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L. M. & Rao, A. Gene regulation mediated by calcium signals in T lymphocytes. Nature Immunol.2, 316–324 (2001). ArticleCAS Google Scholar
Baksh, S. et al. NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol. Cell10, 1071–1081 (2002). ArticleCASPubMed Google Scholar
Caetano, M. S. et al. NFATC2 transcription factor regulates cell cycle progression during lymphocyte activation: evidence of its involvement in the control of cyclin gene expression. FASEB J.16, 1940–1942 (2002). ArticleCASPubMed Google Scholar
Macian, F., Im, S. H., Garcia-Cozar, F. J. & Rao, A. T-cell anergy. Curr. Opin. Immunol.16, 209–216 (2004). ArticleCASPubMed Google Scholar
Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nature Immunol.5, 255–265 (2004). ArticleCAS Google Scholar
Jeon, M. S. et al. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity21, 167–177 (2004). ArticleCASPubMed Google Scholar
Seroogy, C. M. et al. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J. Immunol.173, 79–85 (2004). ArticleCASPubMed Google Scholar
Anandasabapathy, N. et al. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity18, 535–547 (2003). ArticleCASPubMed Google Scholar
Bopp, T. et al. NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. J. Exp. Med.201, 181–187 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gremese, E. & Ferraccioli, G. F. Benefit/risk of cyclosporine in rheumatoid arthritis. Clin. Exp. Rheumatol.22, S101–S107 (2004). CASPubMed Google Scholar
Ponticelli, C. et al. From cyclosporine to the future. Transplant. Proc.36, 557S–560S (2004). ArticleCASPubMed Google Scholar
Kaufman, D. B. et al. Immunosuppression: practice and trends. Am. J. Transplant.4, 38–53 (2004). ArticlePubMed Google Scholar
Griffiths, B. & Emery, P. The treatment of lupus with cyclosporin A. Lupus10, 165–170 (2001). ArticleCASPubMed Google Scholar
Kiani, A., Rao, A. & Aramburu, J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity12, 359–372 (2000). ArticleCASPubMed Google Scholar
Bechstein, W. O. Neurotoxicity of calcineurin inhibitors: impact and clinical management. Transpl. Int.13, 313–326 (2000). ArticleCASPubMed Google Scholar
Olyaei, A. J., de Mattos, A. M. & Bennett, W. M. Nephrotoxicity of immunosuppressive drugs: new insight and preventive strategies. Curr. Opin. Crit. Care7, 384–389 (2001). ArticleCASPubMed Google Scholar
Noguchi, H. et al. A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nature Med.10, 305–309 (2004). ArticleCASPubMed Google Scholar
Li, H., Rao, A., Hogan. P. G. Structural delineation of the calcineurin–NFAT interactions and its parallels to PP1 targeting interactions. J. Mol. Biol.342, 1659–1674 (2004). ArticleCASPubMed Google Scholar
Rodriguez, A., Martinez-Martinez, S., Lopez-Maderuelo, M. D., Ortega-Perez, I. & Redondo, J. M. The linker region joining the catalytic and the regulatory domains of CnA is essential for binding to NFAT. J. Biol. Chem.280, 9980–9984 (2005). ArticleCASPubMed Google Scholar
Roehrl, M. H. et al. Selective inhibition of calcineurin–NFAT signaling by blocking protein–protein interaction with small organic molecules. Proc. Natl Acad. Sci. USA101, 7554–7559 (2004). ArticleCASPubMedPubMed Central Google Scholar
Venkatesh, N. et al. Chemical genetics to identify NFAT inhibitors: potential of targeting calcium mobilization in immunosuppression. Proc. Natl Acad. Sci. USA101, 8969–8974 (2004). ArticleCASPubMedPubMed Central Google Scholar