Bevan, M. J. In a radiation chimaera, host H-2 antigens determine the immune responsiveness of donor cytotoxic cells. Nature269, 417–418 (1977). ArticleCASPubMed Google Scholar
Zinkernagel, R. M. et al. On the thymus in the differentiation of “H-2 self-recognition” by T cells: evidence for dual recognition? J. Exp. Med.147, 882–896 (1978). ArticleCASPubMed Google Scholar
Sainte-Marie, G. & Leblond, C. P. Cytologic features and cellular migration in the cortex and medulla of thymus in the young adult rat. Blood23, 275–299 (1964). ArticleCASPubMed Google Scholar
Cantor, H. & Weissman, I. Development and function of subpopulations of thymocytes and T lymphocytes. Prog. Allergy20, 1–64 (1976). CASPubMed Google Scholar
Bhan, A. K., Reinherz, E. L., Poppema, S., McCluskey, R. T. & Schlossman, S. F. Location of T cell and major histocompatibility complex antigens in the human thymus. J. Exp. Med.152, 771–782 (1980). ArticleCASPubMed Google Scholar
Petrie, H. T. Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nature Rev. Immunol.3, 859–866 (2003). ArticleCAS Google Scholar
Gray, D. H. D. et al. Controlling the thymic microenvironment. Curr. Opin. Immunol.17, 137–143 (2005). ArticleCASPubMed Google Scholar
Scollay, R. G., Butcher, E. C. & Weissman, I. L. Thymus cell migration. Quantitative aspects of cellular traffic from the thymus to the periphery in mice. Eur. J. Immunol.10, 210–218 (1980). ArticleCASPubMed Google Scholar
Egerton, M., Scollay, R. & Shortman, K. Kinetics of mature T-cell development in the thymus. Proc. Natl Acad. Sci. USA87, 2579–2582 (1990). ArticleCASPubMedPubMed Central Google Scholar
Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature402, 255–262 (1999). ArticleCASPubMed Google Scholar
Shores, E. W., van Ewijk, W. & Singer, A. Disorganization and restoration of thymic medullary epithelial cells in T cell receptor-negative scid mice: evidence that receptor-bearing lymphocytes influence maturation of the thymic microenvironment. Eur. J. Immunol.21, 1657–1661 (1991). ArticleCASPubMed Google Scholar
van Ewijk, W., Shores, E. W. & Singer, A. Crosstalk in the mouse thymus. Immunol. Today15, 214–217 (1994). References 13 and 14 were the first to show that thymocyte development affects the development of TECs, coining the idea of crosstalk in the thymus. ArticleCASPubMed Google Scholar
Hollander, G. A. et al. Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature373, 350–353 (1995). ArticleCASPubMed Google Scholar
van Ewijk, W., Hollander, G., Terhorst, C. & Wang, B. Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development127, 1583–1591 (2000). ArticleCASPubMed Google Scholar
Haynes, B. F. & Heinly, C. S. Early human T cell development: analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J. Exp. Med.181, 1445–1458 (1995). ArticleCASPubMed Google Scholar
Bleul, C. C. & Boehm, T. Chemokines define distinct microenvironments in the developing thymus. Eur. J. Immunol.30, 3371–3379 (2000). ArticleCASPubMed Google Scholar
Liu, C. et al. The role of CCL21 in recruitment of T precursor cells to fetal thymus. Blood105, 31–39 (2005). References 19 and 20 show the expression of chemokines in the fetal thymus. Reference 20 further examines the role of chemokines in fetal thymus colonization using a time-lapse visualization technique. ArticleCASPubMed Google Scholar
Wurbel, M. A. et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor γδ+ gut intraepithelial lymphocytes. Blood98, 2626–2632 (2001). ArticleCASPubMed Google Scholar
Ara, T. et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J. Immunol.170, 4649–4655 (2003). ArticleCASPubMed Google Scholar
Lind, E. F., Prockop, S. E., Porritt, H. E. & Petrie, H. T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med.194, 127–134 (2001). This study shows that the adult thymus is seeded at the cortico–medullary junction and that immature thymocytes migrate outwards to the subcapsular zone. ArticleCASPubMedPubMed Central Google Scholar
Rossi, F. M. V. et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nature Immunol.6, 626–634 (2005). This study provides the molecular mechanism of adult thymus seeding by showing the involvement of P-selectin and PSGL1. ArticleCAS Google Scholar
Fossa, D. L., Donskoya, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med.193, 365–374 (2001). Article Google Scholar
Le Douarin, N. M. & Jotereau, F. V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med.142, 17–40 (1975). ArticleCASPubMed Google Scholar
Havran, W. L. & Allison, J. P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature335, 443–445 (1988). ArticleCASPubMed Google Scholar
Coltey, M. et al. Analysis of the first two waves of thymus homing stem cells and their T cell progeny in chick–quail chimeras. J. Exp. Med.170, 543–557 (1989). ArticleCASPubMed Google Scholar
Dunon, D. et al. Ontogeny of the immune system: γδ and αβ T cells migrate from thymus to the periphery in alternating waves. J. Exp. Med.186, 977–988 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell62, 863–874 (1990). ArticleCASPubMed Google Scholar
Weber-Arden, J., Wilbert, O. M., Kabelitz, D. & Arden, B. Vδ repertoire during thymic ontogeny suggests three novel waves of γδ TCR expression. J. Immunol.164, 1002–1012 (2000). ArticleCASPubMed Google Scholar
Pearse, M. et al. A murine early thymocyte developmental sequence is marked by transient expression of the interleukin 2 receptor. Proc. Natl Acad. Sci. USA86, 1614–1618 (1989). ArticleCASPubMedPubMed Central Google Scholar
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell68, 855–867 (1992). ArticleCASPubMed Google Scholar
Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity10, 547–558 (1999). ArticleCASPubMed Google Scholar
Zúñiga-Pflücker, J. C. T-cell development made simple. Nature Rev. Immunol.4, 67–72 (2004). ArticleCAS Google Scholar
Peschon, J. J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med.180, 1955–1960 (1994). ArticleCASPubMed Google Scholar
von Freedem-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med.181, 1519–1526 (1995). Article Google Scholar
Klug, D. B. et al. Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc. Natl Acad. Sci. USA95, 11822–11827 (1998). ArticleCASPubMedPubMed Central Google Scholar
Klug, D. B., Carter, C., Gimenez-Conti, I. B. & Richie, E. R. Thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J. Immunol.169, 2842–2845 (2002). ArticleCASPubMed Google Scholar
Plotkin, J., Prockop, S. E., Lepique, A. & Petrie, H. T. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol.171, 4521–4527 (2003). ArticleCASPubMed Google Scholar
Benz, C., Heinzel, K. & Bleul, C. C. Homing of immature thymocytes to the subcapsular microenvironment within the thymus is not an absolute requirement for T cell development. Eur. J. Immunol.34, 3652–3663 (2004). References 40–42 show the involvement of chemokines in the outward migration of DN thymocytes to the subcapsular zone. ArticleCASPubMed Google Scholar
Raulet, D. H., Garman, R. D., Saito, H. & Tonegawa, S. Developmental regulation of T-cell receptor gene expression. Nature314, 103–107 (1985). ArticleCASPubMed Google Scholar
von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol.15, 433–452 (1997). ArticleCASPubMed Google Scholar
Irving, B. A., Alt, F. W. & Killeen, N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science280, 905–908 (1998). ArticleCASPubMed Google Scholar
Ciofani, M. & Zúñiga-Pflücker, J. C. Notch promotes survival of pre-T cells at the β-selection checkpoint by regulating cellular metabolism. Nature Immunol.6, 881–888 (2005). ArticleCAS Google Scholar
Takahama, Y., Letterio, J. J., Suzuki, H., Farr, A. G. & Singer, A. Early progression of thymocytes along the CD4/CD8 developmental pathway is regulated by a subset of thymic epithelial cells expressing transforming growth factor β. J. Exp. Med.179, 1495–1506 (1994). ArticleCASPubMed Google Scholar
Kisielow, P., Teh, H. S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature335, 730–733 (1988). ArticleCASPubMed Google Scholar
Jameson, S. C., Hogquist, K. A. & Bevan, M. J. Positive selection of thymocytes. Annu. Rev. Immunol.13, 93–126 (1995). ArticleCASPubMed Google Scholar
Witt, C. M., Raychaudhuri, S., Schaefer, B., Chakraborty, A. K. & Robey, E. A. Directed migration of positively selected thymocytes visualized in real time. PLoS Biol.3, e160 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Bousso, P., Bhakta, N. R., Lewis, R. S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science296, 1876–1880 (2002). Through devisingin situvisualization of the thymus microenvironment with two-photon microscopy, references 50 and 51 describe the behaviour and motility of developing thymocytes. ArticleCASPubMed Google Scholar
Kim, C. H., Pelus, L. M., White, J. R. & Broxmeyer, H. E. Differential chemotactic behavior of developing T cells in response to thymic chemokines. Blood91, 4434–4443 (1998). ArticleCASPubMed Google Scholar
Campbell, J. J., Pan, J. & Butcher, E. C. Cutting edge: developmental switches in chemokine responses during T cell maturation. J. Immunol.163, 2353–2357 (1999). CASPubMed Google Scholar
Ueno, T. et al. CCR7 signals are essential for cortex-to-medulla migration of developing thymocytes. J. Exp. Med.200, 493–505 (2004). This study shows the involvement of CCR7 and its ligands in the cortex-to-medulla migration of positively selected thymocytes. ArticleCASPubMedPubMed Central Google Scholar
Kwan, J. & Killeen, N. CCR7 directs the migration of thymocytes into the thymic medulla. J. Immunol.172, 3999–4007 (2004). ArticleCASPubMed Google Scholar
Eggli, P., Schaffner, T., Gerber, H. A., Hess, M. W. & Cottier, H. Accessibility of thymic cortical lymphocytes to particles translocated from the peritoneal cavity to parathymic lymph nodes. Thymus8, 129–139 1986). CASPubMed Google Scholar
Nieuwenhuis, P. et al. The transcapsular route: a new way for (self-) antigens to by-pass the blood–thymus barrier. Immunol. Today9, 372–375 (1988). ArticleCASPubMed Google Scholar
Shores, E. W., van Ewijk, W. & Singer, A. Maturation of medullary thymic epithelium requires thymocytes expressing fully assembled CD3–TCR complexes. Int. Immunol.6, 1393–1402 (1994). ArticleCASPubMed Google Scholar
Nasreen, M., Ueno, T., Saito, F. & Takahama, Y. In vivo treatment of class II MHC-deficient mice with anti-TCR antibody restores the generation of circulating CD4 T cells and optimal architecture of thymic medulla. J. Immunol.171, 3394–3400 (2003). ArticleCASPubMed Google Scholar
Burkly, L. et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature373, 531–536 (1995). ArticleCASPubMed Google Scholar
Boehm, T., Scheu, S., Pfeffer, K. & Bleul, C. C. Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTβR. J. Exp. Med.198, 757–769 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kajiura, F. et al. NF-κB-inducing kinase establishes self-tolerance in a thymic-stroma dependent manner. J. Immunol.172, 2067–2075 (2004). ArticleCASPubMed Google Scholar
Akiyama, T. et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science308, 248–251 (2005). ArticleCASPubMed Google Scholar
Reichert, R. A., Weissman, I. L. & Butcher, E. C. Phenotypic analysis of thymocytes that express homing receptors for peripheral lymph nodes. J. Immunol.136, 3521–3528 (1986). CASPubMed Google Scholar
Bendelac, A., Matzinger, P., Seder, R. A., Paul, W. E. & Schwartz, R. H. Activation events during thymic selection. J. Exp. Med.175, 731–742 (1992). ArticleCASPubMed Google Scholar
Ramsdell, F., Jenkins, M., Dinh, Q. & Fowlkes, B. J. The majority of CD4+8− thymocytes are functionally immature. J. Immunol.147, 1779–1785 (1991). CASPubMed Google Scholar
Kyewski, B. & Derbinski, J. Self-representation in the thymus: an extended view. Nature Rev. Immunol.4, 688–698 (2004). ArticleCAS Google Scholar
Zuklys, S. et al. Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J. Immunol.165, 1976–1983 (2000). ArticleCASPubMed Google Scholar
Derbinski, J. et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med.202, 33–45 (2005). ArticleCASPubMedPubMed Central Google Scholar
Aaltonen, J. et al. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nature Genet.17, 399–403 (1997). Article Google Scholar
Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the Aire protein. Science298, 1395–1401 (2002). ArticleCASPubMed Google Scholar
Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C. C. Aire regulates negative selection of organ-specific T cells. Nature Immunol.4, 350–354 (2003). ArticleCAS Google Scholar
Kuroda, N. et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of _Aire_-deficient mice. J. Immunol.174, 1862–1870 (2005). ArticleCASPubMed Google Scholar
Gallegos, A. M. & Bevan, M. J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med.200, 1039–1049 (2004). ArticleCASPubMedPubMed Central Google Scholar
Anderson, M. S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity23, 227–239 (2005). ArticleCASPubMed Google Scholar
Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Ann. Rev. Immunol.22, 531–562 (2004). ArticleCAS Google Scholar
Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity22, 329–341 (2005). ArticleCASPubMed Google Scholar
Watanabe, N. et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature436, 1181–1185 (2005). ArticleCASPubMed Google Scholar
Lieberam, I. & Forster, I. The murine β-chemokine TARC is expressed by subsets of dendritic cells and attracts primed CD4+ T cells. Eur. J. Immunol.29, 2684–2694 (1999). ArticleCASPubMed Google Scholar
Alferink, J. et al. Compartmentalized production of CCL17 in vivo: strong inducibility in peripheral dendritic cells contrasts selective absence from the spleen. J. Exp. Med.197, 585–599 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chantry, D. et al. Macrophage-derived chemokine is localized to thymic medullary epithelial cells and is a chemoattractant for CD3+, CD4+, CD8low thymocytes. Blood94, 1890–1898 (1999). ArticleCASPubMed Google Scholar
Annunziato, F. et al. Macrophage-derived chemokine and EBI1-ligand chemokine attract human thymocytes in different stage of development and are produced by distinct subsets of medullary epithelial cells: possible implications for negative selection. J. Immunol.165, 238–246 (2000). ArticleCASPubMed Google Scholar
Chaffin, K. E. & Perlmutter, R. M. A pertussis toxin-sensitive process controls thymocyte emigration. Eur. J. Immunol.21, 2565–2573 (1991). ArticleCASPubMed Google Scholar
Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature427, 355–360 (2004). This study shows the role of S1P and its receptor in thymic export. ArticleCASPubMed Google Scholar
Allende, M. L., Dreier, J. L., Mandala, S. & Proia, R. L. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem.279, 15396–15401 (2004). ArticleCASPubMed Google Scholar
Edsall, L. C. & Spiegel, S. Enzymatic measurement of sphingosine 1-phosphate. Anal. Biochem.272, 80–86 (1999). ArticleCASPubMed Google Scholar
Ueno, T. et al. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity16, 205–218 (2002). ArticleCASPubMed Google Scholar
Poznansky, M. C. et al. Thymocyte emigration is mediated by active movement away from stroma-derived factors. J. Clin. Invest.109, 1101–1110 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kato, S. Thymic microvascular system. Microscopy Res. Tech.38, 287–299 (1997). ArticleCAS Google Scholar
Ushiki, T. A scanning electron-microscopic study of the rat thymus with special reference to cell types and migration of lymphocytes into the general circulation. Cell Tissue Res.244, 285–298 (1986). ArticleCASPubMed Google Scholar
Michie, S. A. & Rouse, R. V. Traffic of mature lymphocytes into the mouse thymus. Thymus13, 141–148 (1989). CASPubMed Google Scholar
Prockop, S. E. et al. Stromal cells provide the matrix for migration of early lymphoid progenitors through the thymic cortex. J. Immunol.169, 4354–4361 (2002). ArticleCASPubMed Google Scholar
Muller, K. M., Luedecker, C. J., Udey, M. C. & Farr, A. G. Involvement of E-cadherin in thymus organogenesis and thymocyte maturation. Immunity6, 257–264 (1997). ArticleCASPubMed Google Scholar
Vergara-Silva, A., Schaefer, K. L. & Berg, L. J. Compartmentalized Eph receptor and ephrin expression in the thymus. Mech. Dev.119 (Suppl. 1), S225–S229 (2002). ArticlePubMed Google Scholar
Yanagawa, Y., Iwabuchi, K. & Onoe, K. Enhancement of stromal cell-derived factor-1α-induced chemotaxis for CD4/8 double-positive thymocytes by fibronectin and laminin in mice. Immunology104, 43–49 (2001). ArticleCASPubMedPubMed Central Google Scholar
Savino, W., Mendes-da-Cruz, D. A., Silva, J. S., Dardenne, M. & Cotta-de-Almeida, V. Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines? Trends Immunol.23, 305–313 (2002). ArticleCASPubMed Google Scholar
Barry, T. S., Jones, D. M., Richter, C. B. & Haynes, B. F. Successful engraftment of human postnatal thymus in severe combined immune deficient (SCID) mice: differential engraftment of thymic components with irradiation versus anti-asialo GM-1 immunosuppressive regimens. J. Exp. Med.173, 167–180 (1991). ArticleCASPubMed Google Scholar
Poznansky, M. C. et al. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nature Biotechnol.18, 729–734 (2000). ArticleCAS Google Scholar
Bhandoola, A. & Sambandam, A. From stem cell to T cell: one route or many? Nature Rev. Immunol.6, 117–126 (2006). ArticleCAS Google Scholar
Kawamoto, H., Ohmura, K. & Katsura, Y. Presence of progenitors restricted to T, B, or myeloid lineage, but absence of multipotent stem cells, in the murine fetal thymus. J. Immunol.161, 3799–3802 (1998). CASPubMed Google Scholar
Rodewald, H. R., Kretzschmar, K., Takeda, S., Hohl, C. & Dessing, M. Identification of pro-thymocytes in murine fetal blood: T lineage commitment can precede thymus colonization. EMBO J.13, 4229–4240 (1994). ArticleCASPubMedPubMed Central Google Scholar
Harman, B. C. et al. T/B lineage choice occurs prior to intrathymic Notch signaling. Blood106, 886–892 (2005). ArticleCASPubMed Google Scholar
Porritt, H. E. et al. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity20, 735–745 (2004). ArticleCASPubMed Google Scholar
Sambandam, A. et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nature Immunol.6, 663–670 (2005). ArticleCAS Google Scholar
Benz, C. & Bleul, C. C. A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision. J. Exp. Med.202, 21–31 (2005). ArticleCASPubMedPubMed Central Google Scholar
Taylor, J. R. et al. Expression and function of chemokine receptors on human thymocytes: implications for infection by human immunodeficiency virus type 1. J. Virol.75, 8752–8760 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wurbel, M. A. et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur. J. Immunol.30, 262–271 (2000). ArticleCASPubMed Google Scholar
Carramolino, L. et al. Expression of CCR9 β-chemokine receptor is modulated in thymocyte differentiation and is selectively maintained in CD8+ T cells from secondary lymphoid organs. Blood97, 850–857 (2001). ArticleCASPubMed Google Scholar
Norment, A. M., Bogatzki, L. Y., Gantner, B. N. & Bevan, M. J. Murine CCR9, a chemokine receptor for thymus-expressed chemokine that is up-regulated following pre-TCR signaling. J. Immunol.164, 639–648 (2000). ArticleCASPubMed Google Scholar
Uehara, S., Song, K., Farber, J. M. & Love, P. E. Characterization of CCR9 expression and CCL25/thymus-expressed chemokine responsiveness during T cell development: CD3highCD69+ thymocytes and γδ TCR+ thymocytes preferentially respond to CCL25. J. Immunol.168, 134–142 (2002). ArticleCASPubMed Google Scholar
Youn, B. S., Kim, C. H., Smith, F. O. & Broxmeyer, H. E. TECK, an efficacious chemoattractant for human thymocytes, uses GPR-9–6/CCR9 as a specific receptor. Blood94, 2533–2536 (1999). ArticleCASPubMed Google Scholar
Zaitseva, M. et al. Stromal-derived factor 1 expression in the human thymus. J. Immunol.168, 2609–2617 (2002). ArticleCASPubMed Google Scholar