Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma (original) (raw)
Cookson, W. The immunogenetics of asthma and eczema: a new focus on the epithelium. Nature Rev. Immunol.4, 978–988 (2004). ArticleCAS Google Scholar
Holt, P. G., Macaubas, C., Stumbles, P. A. & Sly, P. D. The role of allergy in the development of asthma. Nature402, B12–B17 (1999). ArticleCASPubMed Google Scholar
Robinson, D. R. et al. Predominant Th2-like bronchoalveolar T lymphocyte population in atopic asthma. N. Engl. J. Med.326, 298–304 (1992). ArticleCASPubMed Google Scholar
Humbert, M. et al. The immunopathology of extrinsic (atopic) and intrinsic (non-atopic) asthma: more similarities than differences. Immunol. Today20, 528–533 (1999). ArticleCASPubMed Google Scholar
Brightling, C. E. et al. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med.346, 1699–1705 (2002). ArticlePubMed Google Scholar
Vercelli, D. Discovering susceptibility genes for asthma and allergy. Nature Rev. Immunol.8, 169-182 (2008). ArticleCAS Google Scholar
Palmer, C. N. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genet.38, 441–446 (2006). ArticleCASPubMed Google Scholar
Van Eerdewegh, P. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature418, 426–430 (2002). ArticleCASPubMed Google Scholar
Kheradmand, F. et al. A protease-activated pathway underlying Th cell type 2 activation and allergic lung disease. J. Immunol.169, 5904–5911 (2002). This study is the first to show that proteolytic allergens promote TH2-cell sensitization. ArticleCASPubMed Google Scholar
Wan, H. et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J. Clin. Invest.104, 123–133 (1999). This study shows that Der p 1 cleaves tight junctions and in this way gains access to DCs through a paracellular route. ArticleCASPubMedPubMed Central Google Scholar
Kauffman, H. F., Tamm, M., Timmerman, J. A. & Borger, P. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms. Clin. Mol. Allergy4, 5 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Hammad, H. et al. TH2 polarization by Der p 1–pulsed monocyte-derived dendritic cells is due to the allergic status of the donors. Blood98, 1135–1141 (2001). ArticleCASPubMed Google Scholar
Hammad, H. et al. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of TH2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22. Eur. Cytokine Netw.14, 219–228 (2003). CASPubMed Google Scholar
Charbonnier, A. S. et al. Der p 1-pulsed myeloid and plasmacytoid dendritic cells from house dust mite-sensitized allergic patients dysregulate the T cell response. J. Leukoc. Biol.73, 91–99 (2003). ArticleCASPubMed Google Scholar
de Nadai, P. et al. Involvement of CCL18 in allergic asthma. J. Immunol.176, 6286–6293 (2006). ArticleCASPubMed Google Scholar
Asokananthan, N. et al. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (δ)-2 and inactivates PAR-1. J. Immunol.169, 4572–4578 (2002). ArticleCASPubMed Google Scholar
Jahnsen, F. L. et al. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol.177, 5861–5867 (2006). ArticleCASPubMed Google Scholar
Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med.203, 2841–2852 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sung, S. S. et al. A major lung CD103 (αE) β7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol.176, 2161–2172 (2006). ArticleCASPubMed Google Scholar
Vermaelen, K. Y., Carro-Muino, I., Lambrecht, B. N. & Pauwels, R. A. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J. Exp. Med.193, 51–60 (2001). This study demonstrates that DCs sample the airway lumen for the presence of antigen even in the absence of inflammation. ArticleCASPubMedPubMed Central Google Scholar
De Heer, H. J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med.200, 89–98 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wikstrom, M. E. & Stumbles, P. A. Mouse respiratory tract dendritic cell subsets and the immunological fate of inhaled antigens. Immunol. Cell Biol.85, 182–188 (2007). ArticleCASPubMed Google Scholar
Hintzen, G. et al. Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J. Immunol.177, 7346–7354 (2006). ArticleCASPubMed Google Scholar
Jakubzick, C., Tacke, F., Llodra, J., van Rooijen, N. & Randolph, G. J. Modulation of dendritic cell trafficking to and from the airways. J. Immunol.176, 3578–3584 (2006). ArticleCASPubMed Google Scholar
Cleret, A. et al. Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J. Immunol.178, 7994–8001 (2007). ArticleCASPubMed Google Scholar
Itano, A. A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity19, 47–57 (2003). ArticleCASPubMed Google Scholar
Hammad, H. et al. Prostaglandin D2 modifies airway dendritic cell migration and function in steady state conditions by selective activation of the DP-receptor. J. Immunol.171, 3936–3940 (2003). ArticleCASPubMed Google Scholar
Tai, H. Y. et al. Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy61, 382–388 (2006). ArticleCASPubMed Google Scholar
Runswick, S., Mitchell, T., Davies, P., Robinson, C. & Garrod, D. R. Pollen proteolytic enzymes degrade tight junctions. Respirology12, 834–842 (2007). ArticlePubMed Google Scholar
Antony, A. B., Tepper, R. S. & Mohammed, K. A. Cockroach extract antigen increases bronchial airway epithelial permeability. J. Allergy Clin. Immunol.110, 589–595 (2002). ArticlePubMed Google Scholar
Lee, C. G. et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nature Med.10, 1095–1103 (2004). ArticleCASPubMed Google Scholar
Olivera, D. S., Boggs, S. E., Beenhouwer, C., Aden, J. & Knall, C. Cellular mechanisms of mainstream cigarette smoke-induced lung epithelial tight junction permeability changes in vitro. Inhal. Toxicol.19, 13–22 (2007). ArticleCASPubMed Google Scholar
Broeckaert, F. et al. Serum clara cell protein: a sensitive biomarker of increased lung epithelium permeability caused by ambient ozone. Environ. Health Perspect.108, 533–537 (2000). ArticleCASPubMedPubMed Central Google Scholar
Van Hove, C. L., Maes, T., Joos, G. F. & Tournoy, K. G. Prolonged inhaled allergen exposure can induce persistent tolerance. Am. J. Respir. Cell. Mol. Biol.36, 573–584 (2007). ArticleCASPubMed Google Scholar
Ostroukhova, M. et al. Tolerance induced by inhaled antigen involves CD4+ T cells expressing membrane-bound TGF-β and FOXP3. J. Clin. Invest.114, 28–38 (2004). ArticleCASPubMedPubMed Central Google Scholar
McMenamin, C., Pimm, C., McKersey, M. & Holt, P. G. Regulation of IgE responses to inhaled antigen in mice by antigen-specific γδ T cells. Science265, 1869–1871 (1994). ArticleCASPubMed Google Scholar
Hurst, S. D., Seymour, B. W., Muchamuel, T., Kurup, V. P. & Coffman, R. L. Modulation of inhaled antigen-induced IgE tolerance by ongoing TH2 responses in the lung. J. Immunol.166, 4922–4930 (2001). ArticleCASPubMed Google Scholar
Akbari, O. et al. Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nature Med.8, 1024–1032 (2002). ArticleCASPubMed Google Scholar
Sporri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nature Immunol.6, 163–170 (2005). ArticleCAS Google Scholar
Reis e Sousa, C. Dendritic cells in a mature age. Nature Rev. Immunol.6, 476–483 (2006). ArticleCAS Google Scholar
Gett, A. V., Sallusto, F., Lanzavecchia, A. & Geginat, J. T cell fitness determined by signal strength. Nature Immunol.4, 355–360 (2003). ArticleCAS Google Scholar
Akbari, O., DeKruyff, R. H. & Umetsu, D. T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunol.2, 725–731 (2001). This paper was the first to show that lung DCs can also mediate tolerance. ArticleCAS Google Scholar
Smit, J. J., Rudd, B. D. & Lukacs, N. W. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J. Exp. Med.203, 1153–1159 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ito, T. et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J. Exp. Med.204, 105–115 (2007). ArticleCASPubMedPubMed Central Google Scholar
Martin, P. et al. Characterization of a new subpopulation of mouse CD8α+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood100, 383–390 (2002). ArticleCASPubMed Google Scholar
Ochando, J. C. et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunol.7, 652–662 (2006). ArticleCAS Google Scholar
Grohmann, U. et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Med.13, 579–586 (2007). ArticleCASPubMed Google Scholar
Eisenbarth, S. C. et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med.196, 1645–1651 (2002). This study was instrumental in demonstrating that TLR agonists do not always prime for TH1-cell immune responses, but can also promote allergic TH2-cell responses when administered in minute amounts. ArticleCASPubMedPubMed Central Google Scholar
Braun-Fahrlander, C. et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med.347, 869–877 (2002). ArticlePubMed Google Scholar
Rodriguez, D. et al. Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity. J. Immunol.171, 1001–1008 (2003). ArticleCASPubMed Google Scholar
Baldini, M. et al. A Polymorphism* in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am. J. Respir. Cell Mol. Biol.20, 976–983 (1999). ArticleCASPubMed Google Scholar
Eder, W. et al. Association between exposure to farming, allergies and genetic variation in CARD4/NOD1. Allergy61, 1117–1124 (2006). ArticleCASPubMed Google Scholar
Seymour, B. W. P., Gershwin, L. J. & Coffman, R. L. Aerosol-induced immunoglobulin (Ig)-E unresponsiveness to ovalbumin does not require CD8+ or T cell receptor (TCR)- γ/δ+ T cells or interferon (IFN)-γ in a murine model of allergen sensitization. J. Exp. Med.187, 721–731 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kiss, A. et al. A new mechanism regulating the initiation of allergic airway inflammation. J. Allergy Clin. Immunol.120, 334–342 (2007). ArticleCASPubMed Google Scholar
Furmonaviciene, R. et al. The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses. Clin. Exp. Allergy37, 231–242 (2007). ArticleCASPubMed Google Scholar
Ghaemmaghami, A. M., Gough, L., Sewell, H. F. & Shakib, F. The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced TH2 bias determined at the dendritic cell level. Clin. Exp. Allergy32, 1468–1475 (2002). ArticleCASPubMed Google Scholar
Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med.202, 1213–1223 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tesciuba, A. G. et al. Inducible costimulator regulates TH2-mediated inflammation, but not TH2 differentiation, in a model of allergic airway disease. J. Immunol.167, 1996–2003 (2001). ArticleCASPubMed Google Scholar
Traidl-Hoffmann, C. et al. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J. Exp. Med.201, 627–636 (2005). ArticleCASPubMedPubMed Central Google Scholar
Boldogh, I. et al. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J. Clin. Invest.115, 2169–2179 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lambrecht, B. N. et al. Myeloid dendritic cells induce TH2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Invest.106, 551–559 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kauffmann, H. F. Innate immune responses to environmental allergens. Clin. Rev. Allergy Immunol.30, 129–140 (2006). Article Google Scholar
Kato, A., Favoreto, S. Jr, Avila, P. C. & Schleimer, R. P. TLR3- and TH2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J. Immunol.179, 1080–1087 (2007). ArticleCASPubMed Google Scholar
Stumbles, P. A. et al. Regulation of dendritic cell recruitment into resting and inflamed airway epithelium: use of alternative chemokine receptors as a function of inducing stimulus. J. Immunol.167, 228–234 (2001). ArticleCASPubMed Google Scholar
Bilyk, N. & Holt, P. G. Inhibition of the immunosuppressive activity of resident pulmonary alveolar macrophages by granulocyte/macrophage colony-stimulating factor. J. Exp. Med.177, 1773–1777 (1993). ArticleCASPubMed Google Scholar
Ebeling, C., Lam, T., Gordon, J. R., Hollenberg, M. D. & Vliagoftis, H. Proteinase-activated receptor-2 promotes allergic sensitization to an inhaled antigen through a TNF-mediated pathway. J. Immunol.179, 2910–2917 (2007). ArticleCASPubMed Google Scholar
Nolte, M. A., Leibundgut-Landmann, S., Joffre, O. & Sousa, C. R. Dendritic cell quiescence during systemic inflammation driven by LPS stimulation of radioresistant cells in vivo. J. Exp. Med.204, 1487–1501 (2007). ArticleCASPubMedPubMed Central Google Scholar
Noulin, N. et al. Both hemopoietic and resident cells are required for MyD88-dependent pulmonary inflammatory response to inhaled endotoxin. J. Immunol.175, 6861–6869 (2005). ArticleCASPubMed Google Scholar
Pichavant, M. et al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J. Allergy Clin. Immunol.115, 771–778 (2005). ArticleCASPubMed Google Scholar
Reibman, J., Hsu, Y., Chen, L. C., Bleck, B. & Gordon, T. Airway epithelial cells release MIP-3/CCL20 in response to cytokines and ambient particulate matter. Am. J. Respir. Cell. Mol. Biol.28, 648–654 (2003). ArticleCASPubMed Google Scholar
Yang, D. et al. _β_-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science286, 525–528 (1999). ArticleCASPubMed Google Scholar
Robays, L. J. et al. Chemokine receptor CCR2 but not CCR5 or CCR6 mediates the increase in pulmonary dendritic cells during allergic airway inflammation. J. Immunol.178, 5305–5311 (2007). ArticleCASPubMed Google Scholar
Liu, Y. J. et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu. Rev. Immunol.25, 193–219 (2007). ArticleCASPubMed Google Scholar
Leonard, W. J. TSLP: finally in the limelight. Nature Immunol.3, 605–607 (2002). ArticleCAS Google Scholar
Wang, Y. H. et al. Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity24, 827–838 (2006). ArticleCASPubMed Google Scholar
Omori, M. & Ziegler, S. Induction of IL-4 expression in CD4+ T cells by thymic stromal lymphopoietin. J. Immunol.178, 1396–1404 (2007). ArticleCASPubMed Google Scholar
Wang, Y. H. et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated TH2 memory cells. J. Exp. Med.204, 1837–1847 (2007). ArticleCASPubMedPubMed Central Google Scholar
Allakhverdi, Z. et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med.204, 253–258 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nature Immunol.6, 1047–1053 (2005). This study shows that overexpression of TSLP in the lungs is enough to generate TH2-cell immunity and an asthma phenotype. ArticleCAS Google Scholar
Al-Shami, A., Spolski, R., Kelly, J., Keane-Myers, A. & Leonard, W. J. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med.202, 829–839 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bogiatzi, S. I. et al. Cutting Edge: proinflammatory and TH2 cytokines synergize to induce thymic stromal lymphopoietin production by human skin keratinocytes. J. Immunol.178, 3373–3377 (2007). ArticleCASPubMed Google Scholar
Lee, H. C. & Ziegler, S. F. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB. Proc. Natl Acad. Sci. USA104, 914–919 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ying, S. et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of TH2-attracting chemokines and disease severity. J. Immunol.174, 8183–8190 (2005). ArticleCASPubMed Google Scholar
Shamim, Z. et al. Association between genetic polymorphisms in the human interleukin-7 receptor α-chain and inhalation allergy. Int. J. Immunogenet.34, 149–151 (2007). ArticleCASPubMed Google Scholar
King, C., Brennan, S., Thompson, P. J. & Stewart, G. A. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J. Immunol.161, 3645–3651 (1998). CASPubMed Google Scholar
Stampfli, M. R. et al. GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J. Clin. Invest.102, 1704–1714 (1998). This study firmly established GM-CSF as a crucial cytokine for promoting TH2-cell immunity to harmless antigens. ArticleCASPubMedPubMed Central Google Scholar
Bleck, B., Tse, D. B., Jaspers, I., Curotto de Lafaille, M. A. & Reibman, J. Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation. J. Immunol.176, 7431–7437 (2006). ArticleCASPubMed Google Scholar
Rusznak, C. et al. Interaction of cigarette smoke and house dust mite allergens on inflammatory mediator release from primary cultures of human bronchial epithelial cells. Clin. Exp. Allergy31, 226–238 (2001). ArticleCASPubMed Google Scholar
Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440, 228–232 (2006). ArticleCASPubMed Google Scholar
Idzko, M. et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nature Med.13, 913–919 (2007). This study is the first to show that an endogenously released danger signal promotes allergic sensitization by stimulating DC function. ArticleCASPubMed Google Scholar
Okada, S. F., Nicholas, R. A., Kreda, S. M., Lazarowski, E. R. & Boucher, R. C. Physiological regulation of ATP release at the apical surface of human airway epithelia. J. Biol. Chem.281, 22992–23002 (2006). ArticleCASPubMed Google Scholar
Coyle, A. J., Page, C. P., Atkinson, L., Flanagan, R. & Metzger, W. J. The requirement for platelets in allergen-induced late asthmatic airway obstruction. Eosinophil infiltration and heightened airway responsiveness in allergic rabbits. Am. Rev. Respir. Dis.142, 587–593 (1990). ArticleCASPubMed Google Scholar
Kornerup, K. N. & Page, C. P. The role of platelets in the pathophysiology of asthma. Platelets18, 319–328 (2007). ArticleCASPubMed Google Scholar
Xanthou, G. et al. Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nature Med.13, 570–578 (2007). ArticleCASPubMed Google Scholar
Zhu, Z. et al. Acidic mammalian chitinase in asthmatic TH2 inflammation and IL-13 pathway activation. Science304, 1678–1682 (2004). ArticleCASPubMed Google Scholar
Arora, M. et al. Simvastatin promotes TH2-type responses through the induction of the chitinase family member Ym1 in dendritic cells. Proc. Natl Acad. Sci. USA103, 7777–7782 (2006). ArticleCASPubMedPubMed Central Google Scholar
Beaty, S. R., Rose, C. E., Jr. & Sung, S. S. Diverse and potent chemokine production by lung CD11bhi dendritic cells in homeostasis and in allergic lung inflammation. J. Immunol.178, 1882–1895 (2007). ArticleCASPubMed Google Scholar
van Rijt, L. S. et al. Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31hi Ly-6Cneg hematopoietic precursors. Blood100, 3663–3671 (2002). ArticleCASPubMed Google Scholar
Jahnsen, F. L. et al. Rapid dendritic cell recruitment to the bronchial mucosa of patients with atopic asthma in response to local allergen challenge. Thorax56, 823–826 (2001). ArticleCASPubMedPubMed Central Google Scholar
van Rijt, L. S. et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med.201, 981–991 (2005). ArticleCASPubMedPubMed Central Google Scholar
Huh, J. C. et al. Bidirectional interactions between antigen-bearing respiratory tract dendritic cells (DCs) and T cells precede the late phase reaction in experimental asthma: DC activation occurs in the airway mucosa but not in the lung parenchyma. J. Exp. Med.198, 19–30 (2003). ArticleCASPubMedPubMed Central Google Scholar
Vermaelen, K. et al. Matrix metalloproteinse-9-mediated dendritic cell recruitment into the airways is a critical step in mouse model of asthma. J. Immunol.171, 1016–1022 (2003). ArticleCASPubMed Google Scholar
Schnyder-Candrian, S. et al. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med.203, 2715–2725 (2006). ArticleCASPubMedPubMed Central Google Scholar
Webb, D. C., Cai, Y., Matthaei, K. I. & Foster, P. S. Comparative roles of IL-4, IL-13, and IL-4Rα in dendritic cell maturation and CD4+ TH2 cell function. J. Immunol.178, 219–227 (2007). ArticleCASPubMed Google Scholar
Kuperman, D. A. et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nature Med.8, 885–889 (2002). This study firmly established IL-13 as a crucial mediator of allergic asthma. ArticleCASPubMed Google Scholar
Kuperman, D., Schofield, B., Wills-Karp, M. & Grusby, M. J. Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J. Exp. Med.187, 939–948 (1998). ArticleCASPubMedPubMed Central Google Scholar
Heijink, I. H. et al. Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent TH2 cell-promoting activity. J. Immunol.178, 7678–7685 (2007). ArticleCASPubMed Google Scholar
Jiang, A. et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity27, 610–624 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Hammad, H. & Lambrecht, B. N. Recent progress in the biology of airway dendritic cells and implications for understanding the regulation of asthmatic inflammation. J. Allergy Clin. Immunol.118, 331–336 (2006). ArticleCASPubMed Google Scholar
Idzko, M. et al. Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J. Clin. Invest.116, 2935–2944 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hammad, H. et al. Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J. Exp. Med.204, 357–367 (2007). ArticleCASPubMedPubMed Central Google Scholar
Idzko, M. et al. Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function. J. Clin. Invest.117, 464–472 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhou, W. et al. Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells. J. Immunol.178, 702–710 (2007). ArticleCASPubMed Google Scholar
Jutel, M. et al. IL-10 and TGF-β cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur. J. Immunol.33, 1205–1214 (2003). ArticleCASPubMed Google Scholar
Aydogan, M. et al. Comparison of Der p1-specific antibody levels in children with allergic airway disease and healthy controls. Pediatr. Allergy Immunol.18, 320–325 (2007). ArticlePubMed Google Scholar
Wierenga, E. A. et al. Evidence for compartimentalization of functional subsets of CD4+ T lymphocytes in atopic patients. J. Immunol.144, 4651–4656 (1990). CASPubMed Google Scholar
Ling, E. M. et al. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet363, 608–615 (2004). ArticleCASPubMed Google Scholar
Akdis, M. et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J. Exp. Med.199, 1567–1575 (2004). ArticleCASPubMedPubMed Central Google Scholar
Umetsu, D. T., McIntire, J. J., Akbari, O., Macaubas, C. & DeKruyff, R. H. Asthma: an epidemic of dysregulated immunity. Nature Immunol.3, 715–720 (2002). ArticleCAS Google Scholar
del Rio, M.-L., Rodriguez-Barbosa, J.-I., Kremmer, E. & Forster, R. CD103− and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J. Immunol.178, 6861–6866 (2007). ArticleCASPubMed Google Scholar
Belz, G. T. et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl Acad. Sci. USA101, 8670–8675 (2004). ArticleCASPubMedPubMed Central Google Scholar
von Garnier, C. et al. Anatomical location determines the distribution and function of dendritic cells and other APCs in the respiratory tract. J. Immunol.175, 1609–1618 (2005). ArticleCASPubMed Google Scholar
Wills-Karp, M. & Koehl, J. New insights into the role of the complement pathway in allergy and asthma. Curr. Allergy Asthma Rep.5, 362–369 (2005). ArticleCASPubMed Google Scholar
Harris, J. et al. Activity profile of dust mite allergen extract using substrate libraries and functional proteomic microarrays. Chem. Biol.11, 1361–1372 (2004). ArticleCASPubMed Google Scholar
Schulz, O., Laing, P., Sewell, H. F. & Shakib, F. Der p I, a major allergen of the house dust mite, proteolytically cleaves the low-affinity receptor for human IgE (CD23). Eur. J. Immunol.25, 3191–3194 (1995). ArticleCASPubMed Google Scholar
Kondo, S., Helin, H., Shichijo, M. & Bacon, K. B. Cockroach allergen extract stimulates protease-activated receptor-2 (PAR-2) expressed in mouse lung fibroblast. Inflamm. Res.53, 489–496 (2004). ArticleCASPubMed Google Scholar