The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses (original) (raw)
Walker, L. S. & Abbas, A. K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nature Rev. Immunol.2, 11–19 (2002). CAS Google Scholar
Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet.27, 68–73 (2001). CASPubMed Google Scholar
Wahl, S. M., Orenstein, J. M. & Chen, W. TGF-β influences the life and death decisions of T lymphocytes. Cytokine Growth Factor Rev.11, 71–79 (2000). CASPubMed Google Scholar
Fehervari, Z., Yamaguchi, T. & Sakaguchi, S. The dichotomous role of IL-2: tolerance versus immunity. Trends Immunol.27, 109–111 (2006). CASPubMed Google Scholar
Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity3, 541–547 (1995). CASPubMed Google Scholar
Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science270, 985–988 (1995). References 5 and 6 were the first reports of the lethal lymphoproliferative syndrome that occurs in CTLA4-deficient mice, demonstrating the central role of this molecule in the regulation of T cell immune responses. CASPubMed Google Scholar
Chambers, C. A., Sullivan, T. J. & Allison, J. P. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ cells. Immunity7, 885–895 (1997). This report shows that depletion of CD4+ T cells prevents lymphocytic infiltration of peripheral tissues in CTLA4-deficient mice, illustrating the role of CTLA4 in CD4+ T cell function. CASPubMed Google Scholar
Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science271, 1734–1736 (1996). CASPubMed Google Scholar
Peggs, K. S., Quezada, S. A., Korman, A. J. & Allison, J. P. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr. Opin. Immunol.18, 206–213 (2006). CASPubMed Google Scholar
Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature423, 506–511 (2003). CASPubMed Google Scholar
Vijayakrishnan, L. et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity20, 563–575 (2004). CASPubMed Google Scholar
Gough, S. C., Walker, L. S. & Sansom, D. M. CTLA4 gene polymorphism and autoimmunity. Immunol. Rev.204, 102–115 (2005). CASPubMed Google Scholar
Sansom, D. M., Manzotti, C. N. & Zheng, Y. What's the difference between CD80 and CD86? Trends Immunol.24, 313–318 (2003). Google Scholar
Sansom, D. M. & Walker, L. S. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol. Rev.212, 131–148 (2006). CASPubMed Google Scholar
Keir, M. E. & Sharpe, A. H. The B7/CD28 costimulatory family in autoimmunity. Immunol. Rev.204, 128–143 (2005). CASPubMed Google Scholar
Linsley, P. S. et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med.173, 721–730 (1991). CASPubMed Google Scholar
Thompson, C. et al. CD28 activation pathway regulates the production of multiple T cell-derived lymphokines/cytokines. Proc. Natl Acad. Sci. USA86, 1333–1337 (1993). Google Scholar
Boise, L. H. et al. CD28 costimulation can promote T cell survival by enhancing expression of Bcl-XL . Immunity3, 87–98 (1995). CASPubMed Google Scholar
McLeod, J. D. et al. Activation of human T cells with superantigen and CD28 confers resistance to apoptosis by CD95. J. Immunol.160, 2072–2079 (1998). CASPubMed Google Scholar
Ferguson, S. E., Han, S., Kelsoe, G. & Thompson, C. B. CD28 is required for germinal center formation. J. Immunol.156, 4576–4581 (1996). CASPubMed Google Scholar
Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity8, 89–95 (1998). CASPubMed Google Scholar
Gett, A. V. & Hodgkin, P. D. A cellular calculus for signal integration by T cells. Nature Immunol.1, 239–244 (2000). CAS Google Scholar
Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science261, 609–612 (1993). ArticleCASPubMed Google Scholar
Walker, L. S., Gulbranson-Judge, A., Flynn, S., Brocker, T. & Lane, P. J. Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40. Immunol. Today21, 333–337 (2000). CASPubMed Google Scholar
Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity1, 405–413 (1994). CASPubMed Google Scholar
Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med.182, 459–465 (1995). CASPubMed Google Scholar
Kearney, E. R. et al. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J. Immunol.155, 1032–1036 (1995). CASPubMed Google Scholar
Hurwitz, A. A., Sullivan, T. J., Sobel, R. A. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proc. Natl Acad. Sci. USA99, 3013–3017 (2002). CASPubMedPubMed Central Google Scholar
Collins, A. V. et al. The interaction properties of costimulatory molecules revisited. Immunity17, 201–210 (2002). CASPubMed Google Scholar
Lenschow, D. J. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science257, 789–792 (1992). CASPubMed Google Scholar
Linsley, P. S. et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science257, 792–795 (1992). CASPubMed Google Scholar
Tivol, E. A. et al. CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J. Immunol.158, 5091–5094 (1997). CASPubMed Google Scholar
Mandelbrot, D. A., McAdam, A. J. & Sharpe, A. H. B7–1 or B7–2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J. Exp. Med.189, 435–440 (1999). CASPubMedPubMed Central Google Scholar
Tai, X., Van Laethem, F., Sharpe, A. H. & Singer, A. Induction of autoimmune disease in CTLA-4−/− mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc. Natl Acad. Sci. USA104, 13756–13761 (2007). This study identified the C-terminal proline residues of CD28 that are required to cause the lymphoproliferative syndrome associated with CTLA4 deficiency. This emphasizes that the central role of CTLA4 is to inhibit the CD28 pathway. CASPubMedPubMed Central Google Scholar
Linsley, P. S. et al. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J. Exp. Med.176, 1595–1604 (1992). CASPubMed Google Scholar
Metzler, B., Burkhart, C. & Wraith, D. C. Phenotypic analysis of CTLA-4 and CD28 expression during transient peptide-induced T cell activation in vivo. Int. Immunol.11, 667–675 (1999). CASPubMed Google Scholar
Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000). CASPubMedPubMed Central Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.192, 303–310 (2000). References 38 and 39 provided the first evidence for a role for CTLA4 in TRegcell function. CASPubMedPubMed Central Google Scholar
Mead, K. I. et al. Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J. Immunol.174, 4803–4811 (2005). CASPubMed Google Scholar
Manzotti, C. N. et al. Integration of CD28 and CTLA-4 function results in differential responses of T cells to CD80 and CD86. Eur. J. Immunol.36, 1413–1422 (2006). CASPubMed Google Scholar
Linsley, P. S. et al. Intracellular trafficking of CTLA-4 and focal localisation towards sites of TCR engagement. Immunity4, 535–543 (1996). This study shows that CTLA4 is an intracellular protein that is stimulated to traffic to TCR contact sites. CASPubMed Google Scholar
Shiratori, T. et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity6, 583–589 (1997). This work demonstrates the association of CTLA4 with the clathrin-associated adaptor complex AP2, which underpins its endocytic behaviour. CASPubMed Google Scholar
Chuang, E. et al. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J. Immunol.159, 144–151 (1997). CASPubMed Google Scholar
Zhang, Y. & Allison, J. P. Interaction of CTLA-4 with AP-50, a clathrin-coated pit adaptor protein. Proc. Natl Acad. Sci. USA94, 9273–9278 (1997). CASPubMedPubMed Central Google Scholar
Schneider, H. et al. Cytolytic T lymphocyte-associated antigen-4 and the TCRζ/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J. Immunol.163, 1868–1879 (1999). CASPubMed Google Scholar
Egen, J. G. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity16, 23–35 (2002). This study shows that TCR stimulation causes accumulation of CTLA4 at the immune synapse. CASPubMed Google Scholar
Qureshi, O. S. et al. _Trans_-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science332, 600–603 (2011). CASPubMedPubMed Central Google Scholar
Iida, T. et al. Regulation of cell surface expression of CTLA-4 by secretion of CTLA-4-containing lysosomes upon activation of CD4+ T cells. J. Immunol.165, 5062–5068 (2000). CASPubMed Google Scholar
Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell126, 375–387 (2006). CASPubMed Google Scholar
Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature445, 771–775 (2007). CASPubMed Google Scholar
Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188, 287–296 (1998). CASPubMedPubMed Central Google Scholar
Tang, Q. et al. Distinct roles of CTLA-4 and TGF-β in CD4+CD25+ regulatory T cell function. Eur. J. Immunol.34, 2996–3005 (2004). CASPubMed Google Scholar
Manzotti, C. N. et al. Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur. J. Immunol.32, 2888–2896 (2002). CASPubMed Google Scholar
Zheng, Y. et al. Acquisition of suppressive function by activated human CD4+ CD25− T cells is associated with the expression of CTLA-4 not FoxP3. J. Immunol.181, 1683–1691 (2008). CASPubMed Google Scholar
Kataoka, H. et al. CD25+CD4+ regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int. Immunol.17, 421–427 (2005). This study demonstrates that suppression by wild-type TRegcells is CTLA4 dependent, but that alternative mechanisms can allow CTLA4-deficient cells to suppress immune responses. CASPubMed Google Scholar
Quezada, S. A., Peggs, K. S., Curran, M. A. & Allison, J. P. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest.116, 1935–1945 (2006). CASPubMedPubMed Central Google Scholar
Kavanagh, B. et al. CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependant fashion. Blood112, 1175–1183 (2008). CASPubMedPubMed Central Google Scholar
Schmidt, E. M. et al. CTLA-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J. Immunol.182, 274–282 (2009). CASPubMed Google Scholar
Verhagen, J. et al. Enhanced selection of FoxP3+ T-regulatory cells protects CTLA-4-deficient mice from CNS autoimmune disease. Proc. Natl Acad. Sci. USA106, 3306–3311 (2009). CASPubMedPubMed Central Google Scholar
Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science322, 271–275 (2008). CASPubMed Google Scholar
Read, S. et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol.177, 4376–4383 (2006). CASPubMed Google Scholar
Sojka, D. K., Hughson, A. & Fowell, D. J. CTLA-4 is required by CD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation. Eur. J. Immunol.39, 1544–1551 (2009). CASPubMedPubMed Central Google Scholar
Kolar, P. et al. CTLA-4 (CD152) controls homeostasis and suppressive capacity of regulatory T cells in mice. Arthritis Rheum.60, 123–132 (2009). CASPubMed Google Scholar
Ise, W. et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nature Immunol.11, 129–135 (2010). CAS Google Scholar
Jain, N., Nguyen, H., Chambers, C. & Kang, J. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc. Natl Acad. Sci. USA107, 1524–1528 (2010). CASPubMedPubMed Central Google Scholar
Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity28, 546–558 (2008). CASPubMed Google Scholar
Tang, Q. & Bluestone, J. A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. NatureImmunol.9, 239–244 (2008). CAS Google Scholar
Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nature Rev. Immunol.8, 523–532 (2008). CAS Google Scholar
Krummel, M. F. & Allison, J. P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med.183, 2533–2540 (1996). CASPubMed Google Scholar
Walunas, T. L., Bakker, C. Y. & Bluestone, J. A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med.183, 2541–2550 (1996). CASPubMed Google Scholar
Chuang, E. et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity13, 313–322 (2000). CASPubMed Google Scholar
Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol.25, 9543–9553 (2005). CASPubMedPubMed Central Google Scholar
Marengere, L. E. et al. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science272, 1170–1173 (1996). CASPubMed Google Scholar
Lee, K. M. et al. Molecular basis of T cell inactivation by CTLA-4. Science282, 2263–2266 (1998). CASPubMed Google Scholar
Martin, M., Schneider, H., Azouz, A. & Rudd, C. E. Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function. J. Exp. Med.194, 1675–1681 (2001). CASPubMedPubMed Central Google Scholar
Chikuma, S., Imboden, J. B. & Bluestone, J. A. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.197, 129–135 (2003). CASPubMedPubMed Central Google Scholar
Darlington, P. J. et al. Surface cytotoxic T lymphocyte-associated antigen 4 partitions within lipid rafts and relocates to the immunological synapse under conditions of inhibition of T cell activation. J. Exp. Med.195, 1337–1347 (2002). CASPubMedPubMed Central Google Scholar
Chuang, E. et al. Regulation of cytotoxic T lymphocyte-associated molecule-4 by Src kinases. J. Immunol.162, 1270–1277 (1999). CASPubMed Google Scholar
Hu, H., Rudd, C. E. & Schneider, H. Src kinases Fyn and Lck facilitate the accumulation of phosphorylated CTLA-4 and its association with PI-3 kinase in intracellular compartments of T-cells. Biochem. Biophys. Res. Commun.288, 573–578 (2001). CASPubMed Google Scholar
Schneider, H., Schwartzberg, P. L. & Rudd, C. E. Resting lymphocyte kinase (Rlk/Txk) phosphorylates the YVKM motif and regulates PI 3-kinase binding to T-cell antigen CTLA-4. Biochem. Biophys. Res. Commun.252, 14–19 (1998). CASPubMed Google Scholar
Schneider, H., Valk, E., Leung, R. & Rudd, C. E. CTLA-4 activation of phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. PLoS ONE3, e3842 (2008). PubMedPubMed Central Google Scholar
Schneider, H. et al. Cutting edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J. Immunol.169, 3475–3479 (2002). CASPubMed Google Scholar
Schneider, H., Smith, X., Liu, H., Bismuth, G. & Rudd, C. E. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur. J. Immunol.38, 40–47 (2008). CASPubMedPubMed Central Google Scholar
Calvo, C. R., Amsen, D. & Kruisbeek, A. M. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor ζ and ZAP70. J. Exp. Med.186, 1645–1653 (1997). CASPubMedPubMed Central Google Scholar
Stein, P. H., Fraser, J. D. & Weiss, A. The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol. Cell. Biol.14, 3392–3402 (1994). CASPubMedPubMed Central Google Scholar
Araki, M. et al. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J. Immunol.183, 5146–5157 (2009). CASPubMed Google Scholar
Chikuma, S., Abbas, A. K. & Bluestone, J. A. B7-independent inhibition of T cells by CTLA-4. J. Immunol.175, 177–181 (2005). CASPubMed Google Scholar
Choi, J. M. et al. Transduction of the cytoplasmic domain of CTLA-4 inhibits TcR-specific activation signals and prevents collagen-induced arthritis. Proc. Natl Acad. Sci. USA105, 19875–19880 (2008). CASPubMedPubMed Central Google Scholar
Choi, J. M. et al. Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nature Med.12, 574–579 (2006). CASPubMed Google Scholar
Jeffery, L. et al. 1,25-dihydroxyvitamin D3 and interleukin-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol.183, 5458–5467 (2009). CASPubMed Google Scholar
Bowlus, C. L. The role of iron in T cell development and autoimmunity. Autoimmun. Rev.2, 73–78 (2003). CASPubMed Google Scholar
Thompson, C. B. & Allison, J. P. The emerging role of CTLA-4 as an immune attenuator. Immunity7, 445–450 (1997). CASPubMed Google Scholar
Alegre, M.-L. et al. Regulation of surface and intracellular expression of CTLA-4 on mouse T cells. J. Immunol.157, 4762–4770 (1996). CASPubMed Google Scholar
Carreno, B. M. et al. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J. Immunol.165, 1352–1356 (2000). CASPubMed Google Scholar
Yokosuka, T. et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity33, 326–339 (2010). CASPubMed Google Scholar
Masteller, E. L., Chuang, E., Mullen, A. C., Reiner, S. L. & Thompson, C. B. Structural analysis of CTLA-4 function in vivo. J. Immunol.164, 5319–5327 (2000). CASPubMed Google Scholar
Schneider, H., Valk, E., da Rocha Dias, S., Wei, B. & Rudd, C. E. CTLA-4 up-regulation of lymphocyte function-associated antigen 1 adhesion and clustering as an alternate basis for coreceptor function. Proc. Natl Acad. Sci. USA102, 12861–12866 (2005). CASPubMedPubMed Central Google Scholar
Onishi, Y., Fehervari, Z., Yamaguchi, T. & Sakaguchi, S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl Acad. Sci. USA105, 10113–10118 (2008). CASPubMedPubMed Central Google Scholar
Schneider, H. et al. Reversal of the TCR stop signal by CTLA-4. Science313, 1972–1975 (2006). CASPubMed Google Scholar
Downey, J., Smith, A., Schneider, H., Hogg, N. & Rudd, C. E. TCR/CD3 mediated stop-signal is decoupled in T-cells from Ctla4 deficient mice. Immunol. Lett.115, 70–72 (2008). CASPubMed Google Scholar
Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunol.7, 83–92 (2006). CAS Google Scholar
Fife, B. T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nature Immunol.10, 1185–1192 (2009). CAS Google Scholar
Bachmann, M. F., Kohler, G., Ecabert, B., Mak, T. W. & Kopf, M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol.163, 1128–1131 (1999). This seminal paper showed for the first time that CTLA4-deficient cells are controlled by a cohort of CTLA4-sufficient cells in mixed bone marrow chimaeras. Despite its relative under-appreciation, this represents the most reproducible experimental approach in CTLA4 biology. CASPubMed Google Scholar
Homann, D. et al. Lack of intrinsic CTLA-4 expression has minimal effect on regulation of antiviral T-cell immunity. J. Virol.80, 270–280 (2006). A careful and comprehensive study of the responses of CTLA4-deficient and CTLA4-sufficient T cells in mixed bone marrow chimaeras. The study examined T cell proliferation, effector function, repertoire selection, functional avidity and memory. CASPubMedPubMed Central Google Scholar
Chikuma, S. & Bluestone, J. A. Expression of CTLA-4 and FOXP3 in cis protects from lethal lymphoproliferative disease. Eur. J. Immunol.37, 1285–1289 (2007). CASPubMed Google Scholar
Friedline, R. H. et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J. Exp. Med.206, 421–434 (2009). CASPubMedPubMed Central Google Scholar
Tivol, E. A. & Gorski, J. Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4. J. Immunol.169, 1852–1858 (2002). CASPubMed Google Scholar
Bachmann, M. F. et al. Normal pathogen-specific immune responses mounted by CTLA-4-deficient T cells: a paradigm reconsidered. Eur. J. Immunol.31, 450–458 (2001). CASPubMed Google Scholar
Bachmann, M. F. et al. Normal responsiveness of CTLA-4-deficient anti-viral cytotoxic T cells. J. Immunol.160, 95–100 (1998). CASPubMed Google Scholar
Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunol.3, 1097–1101 (2002). CAS Google Scholar
Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol.4, 1206–1212 (2003). CAS Google Scholar
Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med.189, 1363–1372 (1999). CASPubMedPubMed Central Google Scholar
Mellor, A. L. et al. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int. Immunol.16, 1391–1401 (2004). CASPubMed Google Scholar
Orabona, C. et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunol.5, 1134–1142 (2004). CAS Google Scholar
Munn, D. H., Sharma, M. D. & Mellor, A. L. Ligation of B7–1/B7–2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol.172, 4100–4110 (2004). CASPubMed Google Scholar
Walker, L. S. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J. Exp. Med.190, 1115–1122 (1999). CASPubMedPubMed Central Google Scholar
Manches, O. et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J. Clin. Invest.118, 3431–3439 (2008). CASPubMedPubMed Central Google Scholar
Davis, P. M., Nadler, S. G., Stetsko, D. K. & Suchard, S. J. Abatacept modulates human dendritic cell-stimulated T-cell proliferation and effector function independent of IDO induction. Clin. Immunol.126, 38–47 (2008). CASPubMed Google Scholar
Agaugue, S., Perrin-Cocon, L., Coutant, F., Andre, P. & Lotteau, V. 1-Methyl-tryptophan can interfere with TLR signaling in dendritic cells independently of IDO activity. J. Immunol.177, 2061–2071 (2006). CASPubMed Google Scholar
Chen, W., Jin, W. & Wahl, S. M. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. J. Exp. Med.188, 1849–1857 (1998). CASPubMedPubMed Central Google Scholar
Oida, T., Xu, L., Weiner, H. L., Kitani, A. & Strober, W. TGF-β-mediated suppression by CD4+CD25+ T cells is facilitated by CTLA-4 signaling. J. Immunol.177, 2331–2339 (2006). CASPubMed Google Scholar
Sullivan, T. J. et al. Lack of a role for transforming growth factor-β in cytotoxic T lymphocyte antigen-4-mediated inhibition of T cell activation. Proc. Natl Acad. Sci. USA98, 2587–2592 (2001). CASPubMedPubMed Central Google Scholar
Green, E. A., Gorelik, L., McGregor, C. M., Tran, E. H. & Flavell, R. A. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β–TGF-β receptor interactions in type 1 diabetes. Proc. Natl Acad. Sci. USA100, 10878–10883 (2003). CASPubMedPubMed Central Google Scholar
Fahlen, L. et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med.201, 737–746 (2005). CASPubMedPubMed Central Google Scholar
Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature359, 693–699 (1992). CASPubMedPubMed Central Google Scholar
Magistrelli, G. et al. A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur. J. Immunol.29, 3596–3602 (1999). CASPubMed Google Scholar
Oaks, M. K. & Hallett, K. M. Cutting edge: a soluble form of CTLA-4 in patients with autoimmune thyroid disease. J. Immunol.164, 5015–5018 (2000). CASPubMed Google Scholar
Toussirot, E. et al. Increased production of soluble CTLA-4 in patients with spondylarthropathies correlates with disease activity. Arthritis Res. Ther.11, R101 (2009). PubMedPubMed Central Google Scholar
Purohit, S. et al. Lack of correlation between the levels of soluble cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and the CT-60 genotypes. J. Autoimmune Dis.2, 8 (2005). PubMedPubMed Central Google Scholar
Mayans, S. et al. CT60 genotype does not affect CTLA-4 isoform expression despite association to T1D and AITD in northern Sweden. BMC Med. Genet.8, 3 (2007). PubMedPubMed Central Google Scholar
Berry, A., Tector, M. & Oaks, M. K. Lack of association between sCTLA-4 levels in human plasma and common CTLA-4 polymorphisms. J. Negat. Results Biomed.7, 8 (2008). PubMedPubMed Central Google Scholar
Tector, M., Khatri, B. O., Kozinski, K., Dennert, K. & Oaks, M. K. Biochemical analysis of CTLA-4 immunoreactive material from human blood. BMC Immunol.10, 51 (2009). PubMedPubMed Central Google Scholar
Tadokoro, C. E. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med.203, 505–511 (2006). CASPubMedPubMed Central Google Scholar
Misra, N., Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M. D. & Kaveri, S. V. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol.172, 4676–4680 (2004). CASPubMed Google Scholar
Cederbom, L., Hall, H. & Ivars, F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol.30, 1538–1543 (2000). CASPubMed Google Scholar
Kastenmuller, W. et al. Regulatory T cells selectively control CD8+ T cell effector pool size via IL-2 restriction. J. Immunol.187, 3186–3197 (2011). CASPubMed Google Scholar
Oderup, C., Cederbom, L., Makowska, A., Cilio, C. M. & Ivars, F. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology118, 240–249 (2006). CASPubMedPubMed Central Google Scholar
Schildknecht, A. et al. FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. Proc. Natl Acad. Sci. USA107, 199–203 (2010). CASPubMed Google Scholar
Serra, P. et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity19, 877–889 (2003). CASPubMed Google Scholar
Kusakari, S. et al. Trans-endocytosis of CD47 and SHPS-1 and its role in regulation of the CD47–SHPS-1 system. J. Cell Sci.121, 1213–1223 (2008). CASPubMed Google Scholar
Marston, D. J., Dickinson, S. & Nobes, C. D. Rac-dependent trans-endocytosis of ephrinBs regulates Eph–ephrin contact repulsion. Nature Cell Biol.5, 879–888 (2003). CASPubMed Google Scholar
Cagan, R. L., Kramer, H., Hart, A. C. & Zipursky, S. L. The bride of sevenless and sevenless interaction: internalization of a transmembrane ligand. Cell69, 393–399 (1992). CASPubMed Google Scholar
Davis, D. M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nature Rev. Immunol.7, 238–243 (2007). CAS Google Scholar
Greenwald, R. J., Boussiotis, V. A., Lorsbach, R. B., Abbas, A. K. & Sharpe, A. H. CTLA-4 regulates induction of anergy in vivo. Immunity14, 145–155 (2001). CASPubMed Google Scholar
Eggena, M. P. et al. Cooperative roles of CTLA-4 and regulatory T cells in tolerance to an islet cell antigen. J. Exp. Med.199, 1725–1730 (2004). CASPubMedPubMed Central Google Scholar
Walker, L. S., Ausubel, L. J., Chodos, A., Bekarian, N. & Abbas, A. K. CTLA-4 differentially regulates T cell responses to endogenous tissue protein versus exogenous immunogen. J. Immunol.169, 6202–6209 (2002). CASPubMed Google Scholar
Bernard, D. et al. Costimulatory receptors in a teleost fish: typical CD28, elusive CTLA4. J. Immunol.176, 4191–4200 (2006). CASPubMed Google Scholar
Hansen, J. D. et al. The B7 family of immunoregulatory receptors: a comparative and evolutionary perspective. Mol. Immunol.46, 457–472 (2009). CASPubMed Google Scholar
Chambers, C. A., Cado, D., Truong, T. & Allison, J. P. Thymocyte development is normal in CTLA-4-deficient mice. Proc. Natl Acad. Sci. USA94, 9296–9301 (1997). CASPubMedPubMed Central Google Scholar
Tang, A. L. et al. CTLA4 expression is an indicator and regulator of steady-state CD4+ FoxP3+ T cell homeostasis. J. Immunol.181, 1806–1813 (2008). CASPubMed Google Scholar
Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity12, 431–440 (2000). CASPubMed Google Scholar
Ikemizu, S. et al. Structure and dimerization of a soluble form of B7–1. Immunity12, 51–60 (2000). CASPubMed Google Scholar
Catalfamo, M., Tai, X., Karpova, T., McNally, J. & Henkart, P. A. TcR-induced regulated secretion leads to surface expression of CTLA-4 in CD4+CD25+ T cells. Immunology125, 70–79 (2008). CASPubMedPubMed Central Google Scholar
Rudd, C. E. The reverse stop-signal model for CTLA4 function. Nature Rev. Immunol.8, 153–160 (2008). CAS Google Scholar