The role of dendritic cells in autoimmunity (original) (raw)
Steinman, R. M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol.30, 1–22 (2012). CASPubMed Google Scholar
Hashimoto, D., Miller, J. & Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity35, 323–335 (2011). CASPubMedPubMed Central Google Scholar
Satpathy, A. T., Wu, X., Albring, J. C. & Murphy, K. M. Re(de)fining the dendritic cell lineage. Nature Immunol.13, 1145–1154 (2012). CAS Google Scholar
Lewis, K. L. & Reizis, B. Dendritic cells: arbiters of immunity and immunological tolerance. Cold Spring Harb. Perspect. Biol.4, a007401 (2012). PubMedPubMed Central Google Scholar
Collin, M., Bigley, V., Haniffa, M. & Hambleton, S. Human dendritic cell deficiency: the missing ID? Nature Rev. Immunol.11, 575–583 (2011). CAS Google Scholar
Segura, E. et al. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity38, 336–348 (2013). CASPubMed Google Scholar
Segura, E. et al. Characterization of resident and migratory dendritic cells in human lymph nodes. J. Exp. Med.209, 653–660 (2012). CASPubMedPubMed Central Google Scholar
Olsson, T., Holmdahl, R., Klareskog, L. & Forsum, U. Ia-expressing cells and T lymphocytes of different subsets in peripheral nerve tissue during experimental allergic neuritis in Lewis rats. Scand. J. Immunol.18, 339–343 (1983). CASPubMed Google Scholar
Knight, S. C., Mertin, J., Stackpoole, A. & Clark, J. Induction of immune responses in vivo with small numbers of veiled (dendritic) cells. Proc. Natl Acad. Sci. USA80, 6032–6035 (1983). This paper shows that 'veiled cells' (that is, DCs) from animals with EAE could transfer the disease to naive recipients, which establishes the capacity of DCs to prime autoreactive T cell responses. CASPubMedPubMed Central Google Scholar
Gallegos, A. M. & Bevan, M. J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med.200, 1039–1049 (2004). CASPubMedPubMed Central Google Scholar
Hubert, F. X. et al. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood118, 2462–2472 (2011). CASPubMed Google Scholar
Lei, Y. et al. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J. Exp. Med.208, 383–394 (2011). CASPubMedPubMed Central Google Scholar
Klein, L., Hinterberger, M., von Rohrscheidt, J. & Aichinger, M. Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol.32, 188–193 (2011). CASPubMed Google Scholar
Birnberg, T. et al. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity29, 986–997 (2008). This paper shows that the constitutive ablation of cDCs does not breach central or peripheral tolerance or induce overt autoimmunity. CASPubMed Google Scholar
Bonasio, R. et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nature Immunol.7, 1092–1100 (2006). CAS Google Scholar
Proietto, A. I. et al. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc. Natl Acad. Sci. USA105, 19869–19874 (2008). CASPubMedPubMed Central Google Scholar
Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med.194, 769–779 (2001). This study pioneered antibody-mediated antigen targeting to demonstrate the capacity of DCs to induce peripheral T cell tolerance. CASPubMedPubMed Central Google Scholar
Hawiger, D., Masilamani, R. F., Bettelli, E., Kuchroo, V. K. & Nussenzweig, M. C. Immunological unresponsiveness characterized by increased expression of CD5 on peripheral T cells induced by dendritic cells in vivo. Immunity20, 695–705 (2004). CASPubMed Google Scholar
Probst, H. C., Lagnel, J., Kollias, G. & van den Broek, M. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity18, 713–720 (2003). This paper further shows the tolerogenic capacity of DCs in the steady state by genetically targeting antigens to DCs. CASPubMed Google Scholar
Probst, H. C., McCoy, K., Okazaki, T., Honjo, T. & van den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nature Immunol.6, 280–286 (2005). CAS Google Scholar
Muth, S., Schutze, K., Schild, H. & Probst, H. C. Release of dendritic cells from cognate CD4+ T-cell recognition results in impaired peripheral tolerance and fatal cytotoxic T-cell mediated autoimmunity. Proc. Natl Acad. Sci. USA109, 9059–9064 (2012). CASPubMedPubMed Central Google Scholar
Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med.198, 235–247 (2003). CASPubMedPubMed Central Google Scholar
Sela, U., Olds, P., Park, A., Schlesinger, S. J. & Steinman, R. M. Dendritic cells induce antigen-specific regulatory T cells that prevent graft versus host disease and persist in mice. J. Exp. Med.208, 2489–2496 (2011). PubMedPubMed Central Google Scholar
Suffner, J. et al. Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3. LuciDTR mice. J. Immunol.184, 1810–1820 (2010). CASPubMed Google Scholar
Bar-On, L., Birnberg, T., Kim, K. W. & Jung, S. Dendritic cell-restricted CD80/86 deficiency results in peripheral regulatory T-cell reduction but is not associated with lymphocyte hyperactivation. Eur. J. Immunol.41, 291–298 (2011). CASPubMed Google Scholar
Vitali, C. et al. Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood120, 1237–1245 (2012). CASPubMed Google Scholar
Darrasse-Jeze, G. et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med.206, 1853–1862 (2009). CASPubMedPubMed Central Google Scholar
Swee, L. K., Bosco, N., Malissen, B., Ceredig, R. & Rolink, A. Expansion of peripheral naturally occurring T regulatory cells by Fms-like tyrosine kinase 3 ligand treatment. Blood113, 6277–6287 (2009). CASPubMed Google Scholar
Collins, C. B. et al. Flt3 ligand expands CD103+ dendritic cells and FoxP3+ T regulatory cells, and attenuates Crohn's-like murine ileitis. Gut61, 1154–1162 (2011). PubMed Google Scholar
Kriegel, M. A., Rathinam, C. & Flavell, R. A. Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c+ CD11b+ dendritic cells. Proc. Natl Acad. Sci. USA109, 3457–3462 (2012). CASPubMedPubMed Central Google Scholar
Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med.207, 823–836 (2010). CASPubMedPubMed Central Google Scholar
Lewis, K. L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity35, 780–791 (2011). CASPubMedPubMed Central Google Scholar
Zangi, L. et al. Deletion of cognate CD8 T cells by immature dendritic cells: a novel role for perforin, granzyme A, TREM-1, and TLR7. Blood120, 1647–1657 (2012). CASPubMed Google Scholar
Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med.206, 549–559 (2009). CASPubMedPubMed Central Google Scholar
Teichmann, L. L. et al. Dendritic cells in lupus are not required for activation of T and B cells but promote their expansion, resulting in tissue damage. Immunity33, 967–978 (2010). CASPubMedPubMed Central Google Scholar
Cervantes-Barragan, L. et al. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc. Natl Acad. Sci. USA109, 3012–3017 (2012). CASPubMedPubMed Central Google Scholar
Chen, M. et al. Dendritic cell apoptosis in the maintenance of immune tolerance. Science311, 1160–1164 (2006). CASPubMed Google Scholar
Stranges, P. B. et al. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity26, 629–641 (2007). CASPubMedPubMed Central Google Scholar
Chen, M., Felix, K. & Wang, J. Immune regulation through mitochondrion-dependent dendritic cell death induced by T regulatory cells. J. Immunol.187, 5684–5692 (2011). CASPubMed Google Scholar
Travis, M. A. et al. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature449, 361–365 (2007). CASPubMedPubMed Central Google Scholar
Melillo, J. A. et al. Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J. Immunol.184, 2638–2645 (2010). CASPubMed Google Scholar
Kim, S. J., Zou, Y. R., Goldstein, J., Reizis, B. & Diamond, B. Tolerogenic function of Blimp-1 in dendritic cells. J. Exp. Med.208, 2193–2199 (2011). CASPubMedPubMed Central Google Scholar
Hammer, G. E. et al. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nature Immunol.12, 1184–1193 (2011). CAS Google Scholar
Kool, M. et al. The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity35, 82–96 (2011). CASPubMed Google Scholar
Kaneko, T. et al. Dendritic cell-specific ablation of the protein tyrosine phosphatase Shp1 promotes Th1 cell differentiation and induces autoimmunity. J. Immunol.188, 5397–5407 (2012). CASPubMed Google Scholar
Abram, C. L., Roberge, G. L., Pao, L. I., Neel, B. G. & Lowell, C. A. Distinct roles for neutrophils and dendritic cells in inflammation and autoimmunity in motheaten mice. Immunity38, 489–501 (2013). CASPubMedPubMed Central Google Scholar
Eriksson, U. et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nature Med.9, 1484–1490 (2003). CASPubMed Google Scholar
Eriksson, U. et al. Activation of dendritic cells through the interleukin 1 receptor 1 is critical for the induction of autoimmune myocarditis. J. Exp. Med.197, 323–331 (2003). CASPubMedPubMed Central Google Scholar
Sonderegger, I. et al. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J. Exp. Med.205, 2281–2294 (2008). CASPubMedPubMed Central Google Scholar
Pagni, P. P., Traub, S., Demaria, O., Chasson, L. & Alexopoulou, L. Contribution of TLR7 and TLR9 signaling to the susceptibility of MyD88-deficient mice to myocarditis. Autoimmunity43, 275–287 (2010). CASPubMed Google Scholar
Popovic, Z. V. et al. The proteoglycan biglycan enhances antigen-specific T cell activation potentially via MyD88 and TRIF pathways and triggers autoimmune perimyocarditis. J. Immunol.187, 6217–6226 (2011). CASPubMed Google Scholar
McMahon, E. J., Bailey, S. L., Castenada, C. V., Waldner, H. & Miller, S. D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Med.11, 335–339 (2005). CASPubMed Google Scholar
Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nature Med.11, 328–334 (2005). CASPubMed Google Scholar
Wu, G. F. et al. Limited sufficiency of antigen presentation by dendritic cells in models of central nervous system autoimmunity. J. Autoimmun.36, 56–64 (2011). CASPubMed Google Scholar
Yogev, N. et al. Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor+ regulatory T cells. Immunity37, 264–275 (2012). This paper shows the overall anti-inflammatory role of cDCs in EAE using various DC ablation methods. CASPubMed Google Scholar
Isaksson, M., Lundgren, B. A., Ahlgren, K. M., Kampe, O. & Lobell, A. Conditional DC depletion does not affect priming of encephalitogenic Th cells in EAE. Eur. J. Immunol.42, 2555–2563 (2012). CASPubMed Google Scholar
Huang, G. et al. Signaling via the kinase p38α programs dendritic cells to drive TH17 differentiation and autoimmune inflammation. Nature Immunol.13, 152–161 (2012). CAS Google Scholar
Melton, A. C. et al. Expression of αvβ8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice. J. Clin. Invest.120, 4436–4444 (2010). CASPubMedPubMed Central Google Scholar
Laouar, Y. et al. TGF-β signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA105, 10865–10870 (2008). CASPubMedPubMed Central Google Scholar
Xiao, S. et al. Tim-1 stimulation of dendritic cells regulates the balance between effector and regulatory T cells. Eur. J. Immunol.41, 1539–1549 (2011). CASPubMedPubMed Central Google Scholar
Guo, B., Chang, E. Y. & Cheng, G. The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J. Clin. Invest.118, 1680–1690 (2008). CASPubMedPubMed Central Google Scholar
Dann, A. et al. Cytosolic RIG-I-like helicases act as negative regulators of sterile inflammation in the CNS. Nature Neurosci.15, 98–106 (2012). CAS Google Scholar
Yen, J. H., Kong, W. & Ganea, D. IFN-β inhibits dendritic cell migration through STAT-1-mediated transcriptional suppression of CCR7 and matrix metalloproteinase 9. J. Immunol.184, 3478–3486 (2010). CASPubMed Google Scholar
Anandasabapathy, N. et al. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J. Exp. Med.208, 1695–1705 (2011). CASPubMedPubMed Central Google Scholar
Prodinger, C. et al. CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol.121, 445–458 (2011). CASPubMed Google Scholar
Bailey, S. L., Schreiner, B., McMahon, E. J. & Miller, S. D. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ TH-17 cells in relapsing EAE. Nature Immunol.8, 172–180 (2007). CAS Google Scholar
Poppensieker, K. et al. CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells. Proc. Natl Acad. Sci. USA109, 3897–3902 (2012). CASPubMedPubMed Central Google Scholar
Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature Immunol.12, 560–567 (2011). CAS Google Scholar
El-Behi, M. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nature Immunol.12, 568–575 (2011). CAS Google Scholar
Bailey-Bucktrout, S. L. et al. Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J. Immunol.180, 6457–6461 (2008). CASPubMed Google Scholar
Irla, M. et al. MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity. J. Exp. Med.207, 1891–1905 (2010). Genetic ablation of MHC class II expression specifically in pDCs shows that pDCs might promote TRegcell development and they might inhibit inflammation in EAE. CASPubMedPubMed Central Google Scholar
Karni, A. et al. Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response. J. Immunol.177, 4196–4202 (2006). CASPubMed Google Scholar
Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity35, 596–610 (2011). CASPubMedPubMed Central Google Scholar
Pantelyushin, S. et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest.122, 2252–2256 (2012). CASPubMedPubMed Central Google Scholar
van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol.182, 5836–5845 (2009). CASPubMed Google Scholar
Walter, A. et al. Aldara activates TLR7-independent immune defence. Nature Commun.4, 1560 (2013). Google Scholar
Tortola, L. et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J. Clin. Invest.122, 3965–3976 (2012). CASPubMedPubMed Central Google Scholar
Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med.202, 135–143 (2005). CASPubMedPubMed Central Google Scholar
Albanesi, C. et al. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J. Exp. Med.206, 249–258 (2009). CASPubMedPubMed Central Google Scholar
Guiducci, C. et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J. Exp. Med.207, 2931–2942 (2010). CASPubMedPubMed Central Google Scholar
Gregorio, J. et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Exp. Med.207, 2921–2930 (2010). CASPubMedPubMed Central Google Scholar
Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature449, 564–569 (2007). CASPubMed Google Scholar
Ganguly, D. et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med.206, 1983–1994 (2009). CASPubMedPubMed Central Google Scholar
de Jersey, J. et al. β-cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. Proc. Natl Acad. Sci. USA104, 1295–1300 (2007). CASPubMedPubMed Central Google Scholar
Turley, S., Poirot, L., Hattori, M., Benoist, C. & Mathis, D. Physiological β-cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J. Exp. Med.198, 1527–1537 (2003). This paper established the role of DCs in the presentation of β-islet cell antigens to self-reactive T cells in experimental diabetes. CASPubMedPubMed Central Google Scholar
Saxena, V., Ondr, J. K., Magnusen, A. F., Munn, D. H. & Katz, J. D. The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J. Immunol.179, 5041–5053 (2007). CASPubMed Google Scholar
Calderon, B., Suri, A., Miller, M. J. & Unanue, E. R. Dendritic cells in islets of Langerhans constitutively present β-cell-derived peptides bound to their class II MHC molecules. Proc. Natl Acad. Sci. USA105, 6121–6126 (2008). CASPubMedPubMed Central Google Scholar
Han, J. et al. Extracellular high-mobility group box 1 acts as an innate immune mediator to enhance autoimmune progression and diabetes onset in NOD mice. Diabetes57, 2118–2127 (2008). CASPubMedPubMed Central Google Scholar
Kim, H. S. et al. Toll-like receptor 2 senses β-cell death and contributes to the initiation of autoimmune diabetes. Immunity27, 321–333 (2007). CASPubMed Google Scholar
Lee, L. F. et al. The role of TNF-α in the pathogenesis of type 1 diabetes in the nonobese diabetic mouse: analysis of dendritic cell maturation. Proc. Natl Acad. Sci. USA102, 15995–16000 (2005). CASPubMedPubMed Central Google Scholar
Van Belle, T. L., Nierkens, S., Arens, R. & von Herrath, M. G. Interleukin-21 receptor-mediated signals control autoreactive T cell infiltration in pancreatic islets. Immunity36, 1060–1072 (2012). CASPubMed Google Scholar
Huang, X., Hultgren, B., Dybdal, N. & Stewart, T. A. Islet expression of interferon-α precedes diabetes in both the BB rat and streptozotocin-treated mice. Immunity1, 469–478 (1994). CASPubMed Google Scholar
Huang, X. et al. Interferon expression in the pancreases of patients with type I diabetes. Diabetes44, 658–664 (1995). CASPubMed Google Scholar
Li, Q. et al. Interferon-α initiates type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA105, 12439–12444 (2008). CASPubMedPubMed Central Google Scholar
Diana, J. et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nature Med.19, 65–73 (2013). CASPubMed Google Scholar
Allen, J. S. et al. Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T-cells through immune complex capture. Diabetes58, 138–145 (2009). CASPubMedPubMed Central Google Scholar
Chilton, P. M. et al. Flt3-ligand treatment prevents diabetes in NOD mice. Diabetes53, 1995–2002 (2004). CASPubMed Google Scholar
O'Keeffe, M. et al. Fms-like tyrosine kinase 3 ligand administration overcomes a genetically determined dendritic cell deficiency in NOD mice and protects against diabetes development. Int. Immunol.17, 307–314 (2005). CASPubMed Google Scholar
Kared, H. et al. Treatment with granulocyte colony-stimulating factor prevents diabetes in NOD mice by recruiting plasmacytoid dendritic cells and functional CD4+CD25+ regulatory T-cells. Diabetes54, 78–84 (2005). CASPubMed Google Scholar
Grupillo, M. et al. Essential roles of insulin expression in Aire+ tolerogenic dendritic cells in maintaining peripheral self-tolerance of islet β-cells. Cell. Immunol.273, 115–123 (2012). CASPubMed Google Scholar
Walsh, E. R. et al. Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity. Proc. Natl Acad. Sci. USA109, 16276–16281 (2012). CASPubMedPubMed Central Google Scholar
Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med.197, 711–723 (2003). CASPubMedPubMed Central Google Scholar
Santiago-Raber, M. L. et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J. Exp. Med.197, 777–788 (2003). CASPubMedPubMed Central Google Scholar
Jorgensen, T. N., Roper, E., Thurman, J. M., Marrack, P. & Kotzin, B. L. Type I interferon signaling is involved in the spontaneous development of lupus-like disease in B6.Nba2 and (B6.Nba2 x NZW)F(1) mice. Genes Immun.8, 653–662 (2007). CASPubMed Google Scholar
Ronnblom, L. & Alm, G. V. A pivotal role for the natural interferon-α-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J. Exp. Med.194, F59–F63 (2001). CASPubMedPubMed Central Google Scholar
Blomberg, S. et al. Presence of cutaneous interferon-α producing cells in patients with systemic lupus erythematosus. Lupus10, 484–490 (2001). CASPubMed Google Scholar
Bave, U. et al. Fcγ RIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-α production induced by apoptotic cells combined with lupus IgG. J. Immunol.171, 3296–3302 (2003). CASPubMed Google Scholar
Means, T. K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest.115, 407–417 (2005). CASPubMedPubMed Central Google Scholar
Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunol.8, 487–496 (2007). CAS Google Scholar
Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med.3, 73ra19 (2011). PubMedPubMed Central Google Scholar
Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med.3, 73ra20 (2011). References 110 and 111 provide evidence that pDC activation by neutrophil-derived self-DNA molecules promotes the development of SLE in humans. PubMedPubMed Central Google Scholar
Guiducci, C. et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature465, 937–941 (2010). CASPubMedPubMed Central Google Scholar
Lepelletier, Y. et al. Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid predendritic cells (pDCs). Blood116, 3389–3397 (2010). CASPubMed Google Scholar
Zhu, X. J., Yang, Z. F., Chen, Y., Wang, J. & Rosmarin, A. G. PU.1 is essential for CD11c expression in CD8+/CD8− lymphoid and monocyte-derived dendritic cells during GM-CSF or FLT3L- induced differentiation. PLoS ONE7, e52141 (2013). Google Scholar
Caton, M. L., Smith-Raska, M. R. & Reizis, B. Notch-RBP-J signaling controls the homeostasis of CD8− dendritic cells in the spleen. J. Exp. Med.204, 1653–1664 (2007). CASPubMedPubMed Central Google Scholar
Persson, E. K. et al. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity38, 958–969 (2013). CASPubMed Google Scholar
Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity38, 970–983 (2013). CASPubMedPubMed Central Google Scholar
Wohn, C. et al. Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc. Natl Acad. Sci. USA110, 10723–10728 (2013). CASPubMedPubMed Central Google Scholar