Some assembly required: the development of neuronal synapses (original) (raw)
Sanes, J. R. & Lichtman, J. W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Rev. Neurosci.2, 791–805 (2001). CAS Google Scholar
Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science274, 1133–1138 (1996). ArticleCASPubMed Google Scholar
Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci.18, 8900–8911 (1998). Using serial section EM and three-dimensional analysis, this study showed that numerous asymmetric synapses are formed on dendritic filopodia in the developing rat hippocampus, especially during the first postnatal week. CASPubMedPubMed Central Google Scholar
Harris, K. M., Jensen, F. E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci.12, 2685–2705 (1992). CASPubMedPubMed Central Google Scholar
Harris, K. M. & Stevens, J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci.9, 2982–2997 (1989). CASPubMedPubMed Central Google Scholar
Papa, M., Bundman, M. C., Greenberger, V. & Segal, M. Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J. Neurosci.15, 1–11 (1995). CASPubMedPubMed Central Google Scholar
Boyer, C., Schikorski, T. & Stevens, C. F. Comparison of hippocampal dendritic spines in culture and in brain. J. Neurosci.18, 5294–5300 (1998). CASPubMedPubMed Central Google Scholar
Hering, H. & Sheng, M. Dendritic spines: structure, dynamics and regulation. Nature Rev. Neurosci.2, 880–888 (2001). CAS Google Scholar
Harris, K. M. & Kater, S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci.17, 341–371 (1994). CASPubMed Google Scholar
Miller, M. & Peters, A. Maturation of rat visual cortex. II. A combined Golgi-electron microscope study of pyramidal neurons. J. Comp. Neurol.203, 555–573 (1981). CASPubMed Google Scholar
Harris, K. M. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol.9, 343–348 (1999). CASPubMed Google Scholar
Dailey, M. E. & Smith, S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci.16, 2983–2994 (1996). CASPubMedPubMed Central Google Scholar
Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron17, 91–102 (1996). CASPubMed Google Scholar
Saito, Y. et al. Developing corticorubral axons of the cat form synapses on filopodial dendritic protrusions. Neurosci. Lett.147, 81–84 (1992). CASPubMed Google Scholar
Ahmari, S. E., Buchanan, J. & Smith, S. J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci.3, 445–451 (2000). Based on time-lapse fluorescence imaging, immunocytochemistry and EM, this study indicates that the presynaptic specialization is rapidly assembled from prefabricated packets, and that these packets contain active-zone proteins and synaptic-vesicle proteins that are associated with vesicular and tubulovesicular membrane structures. CASPubMed Google Scholar
Friedman, H. V., Bresler, T., Garner, C. C. & Ziv, N. E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron27, 57–69 (2000). The temporal order of presynaptic and postsynaptic protein accumulation after axon–dendrite contact was determined using time-lapse microscopy and retrospective immunohistochemistry. The study indicates that presynaptic differentiation precedes postsynaptic differentiation. CASPubMed Google Scholar
Okabe, S., Miwa, A. & Okado, H. Spine formation and correlated assembly of presynaptic and postsynaptic molecules. J. Neurosci.21, 6105–6114 (2001). The temporal sequence of the accumulation of presynaptic (synaptophysin) and postsynaptic (PSD-95) proteins at synapses was examined using dual-wavelength time-lapse imaging, and was correlated with dendritic-spine morphogenesis in cultured hippocampal neurons. CASPubMedPubMed Central Google Scholar
Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev.14, 1169–1180 (2000). CASPubMed Google Scholar
Togashi, H. et al. Cadherin regulates dendritic spine morphogenesis. Neuron35, 77–89 (2002). CASPubMed Google Scholar
Pinkstaff, J. K., Detterich, J., Lynch, G. & Gall, C. Integrin subunit gene expression is regionally differentiated in adult brain. J. Neurosci.19, 1541–1556 (1999). CASPubMedPubMed Central Google Scholar
Aplin, A. E., Howe, A., Alahari, S. K. & Juliano, R. L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev.50, 197–263 (1998). CASPubMed Google Scholar
Milner, R. & Campbell, I. L. The integrin family of cell adhesion molecules has multiple functions within the CNS. J. Neurosci. Res.69, 286–291 (2002). CASPubMed Google Scholar
Pasterkamp, R. J., Peschon, J. J., Spriggs, M. K. & Kolodkin, A. L. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature424, 398–405 (2003). PubMed Google Scholar
Hoang, B. & Chiba, A. Genetic analysis on the role of integrin during axon guidance in Drosophila. J. Neurosci.18, 7847–7855 (1998). CASPubMedPubMed Central Google Scholar
Chavis, P. & Westbrook, G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature411, 317–321 (2001). CASPubMed Google Scholar
Chan, C. S., Weeber, E. J., Kurup, S., Sweatt, J. D. & Davis, R. L. Integrin requirement for hippocampal synaptic plasticity and spatial memory. J. Neurosci.23, 7107–7116 (2003). CASPubMedPubMed Central Google Scholar
Missler, M., Fernandez-Chacon, R. & Sudhof, T. C. The making of neurexins. J. Neurochem.71, 1339–1347 (1998). CASPubMed Google Scholar
Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell101, 657–669 (2000). CASPubMed Google Scholar
Irie, M. et al. Binding of neuroligins to PSD-95. Science277, 1511–1515 (1997). CASPubMed Google Scholar
Hata, Y., Butz, S. & Sudhof, T. C. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci.16, 2488–2494 (1996). CASPubMedPubMed Central Google Scholar
Markus, M. et al. α-Neurexins couple Ca2+-channels to synaptic vesicle exocytosis. Nature424, 939–948 (2003). Google Scholar
Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science297, 1525–1531 (2002). A new immunoglobulin-domain-containing protein — SynCAM — is cloned, which is present at synapses and promotes synapse formationin vitro. CASPubMed Google Scholar
Ethell, I. M. et al. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron31, 1001–1013 (2001). CASPubMed Google Scholar
Penzes, P. et al. Rapid induction of dendritic spine morphogenesis by _trans_-synaptic ephrinB–EphB receptor activation of the Rho-GEF kalirin. Neuron37, 263–274 (2003). The ephrinB–EphB-receptortrans-synaptic signalling pathway was found to regulate the morphogenesis of dendritic spines through the activation of Rac1 in hippocampal neurons. CASPubMed Google Scholar
Takasu, M. A., Dalva, M. B., Zigmond, R. E. & Greenberg, M. E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science295, 491–495 (2002). CASPubMed Google Scholar
Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell103, 945–956 (2000). CASPubMed Google Scholar
Henderson, J. T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron32, 1041–1056 (2001). CASPubMed Google Scholar
Grunwald, I. C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron32, 1027–1040 (2001). CASPubMed Google Scholar
Washbourne, P., Bennett, J. E. & McAllister, A. K. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nature Neurosci.5, 751–759 (2002). The movement of NMDA- and AMPA-receptor clusters and their time course of recruitment to nascent synapses was determined using time-lapse imaging of cultured cortical neurons. CASPubMed Google Scholar
Rao, A., Kim, E., Sheng, M. & Craig, A. M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci.18, 1217–1229 (1998). CASPubMedPubMed Central Google Scholar
Sans, N. et al. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci.20, 1260–1271 (2000). CASPubMedPubMed Central Google Scholar
Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci.17, 5858–5867 (1997). CASPubMedPubMed Central Google Scholar
Zhai, R. G. et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron29, 131–143 (2001). This paper identified a dense-core-vesicle population that contains presynaptic active-zone proteins and probably functions as a transport packet for the assembly of the presynaptic active zone. CASPubMed Google Scholar
Shapira, M. et al. Unitary assembly of presynaptic active zones from piccolo-bassoon transport vesicles. Neuron38, 237–252 (2003). CASPubMed Google Scholar
Zhai, R. et al. Temporal appearance of the presynaptic cytomatrix protein bassoon during synaptogenesis. Mol. Cell. Neurosci.15, 417–428 (2000). CASPubMed Google Scholar
Marrs, G. S., Green, S. H. & Dailey, M. E. Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nature Neurosci.4, 1006–1013 (2001). CASPubMed Google Scholar
El-Husseini, A. E. et al. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J. Cell Biol.148, 159–172 (2000). CASPubMedPubMed Central Google Scholar
Bresler, T. et al. The dynamics of SAP90/PSD-95 recruitment to new synaptic junctions. Mol. Cell. Neurosci.18, 149–167 (2001). CASPubMed Google Scholar
Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature396, 433–439 (1998). CASPubMed Google Scholar
Passafaro, M., Sala, C., Niethammer, M. & Sheng, M. Microtubule binding by CRIPT and its potential role in the synaptic clustering of PSD-95. Nature Neurosci.2, 1063–1069 (1999). CASPubMed Google Scholar
Sprengel, R. et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell92, 279–289 (1998). CASPubMed Google Scholar
Scannevin, R. H. & Huganir, R. L. Postsynaptic organization and regulation of excitatory synapses. Nature Rev. Neurosci.1, 133–141 (2000). CAS Google Scholar
Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci.24, 1–29 (2001). This review summarizes the structure and function of PDZ domains and the cell-biological roles of PDZ-domain-containing scaffold proteins. CASPubMed Google Scholar
Sheng, M. & Pak, D. T. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol.62, 755–778 (2000). CASPubMed Google Scholar
Barry, M. F. & Ziff, E. B. Receptor trafficking and the plasticity of excitatory synapses. Curr. Opin. Neurobiol.12, 279–286 (2002). CASPubMed Google Scholar
Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature408, 936–943 (2000). CASPubMed Google Scholar
Blue, M. E. & Parnavelas, J. G. The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol.12, 697–712 (1983). CASPubMed Google Scholar
Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature375, 400–404 (1995). CASPubMed Google Scholar
Isaac, J. T., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron18, 269–280 (1997). CASPubMed Google Scholar
Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature381, 71–75 (1996). CASPubMed Google Scholar
Wu, G., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science274, 972–976 (1996). CASPubMed Google Scholar
Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron21, 545–559 (1998). CASPubMed Google Scholar
Liao, D., Zhang, X., O'Brien, R., Ehlers, M. D. & Huganir, R. L. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nature Neurosci.2, 37–43 (1999). CASPubMed Google Scholar
Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C. & Nicoll, R. A. Postsynaptically silent synapses in single neuron cultures. Neuron21, 1443–1451 (1998). CASPubMed Google Scholar
Petralia, R. S. et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nature Neurosci.2, 31–36 (1999). CASPubMed Google Scholar
Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci.4, 1086–1092 (2001). Using two-photon excitation of caged-glutamate and electrophysiology studies, the distribution and density of functional AMPA receptors was shown to correlate with the spine-head volume. CASPubMed Google Scholar
Zhu, J. J. & Malinow, R. Acute versus chronic NMDA receptor blockade and synaptic AMPA receptor delivery. Nature Neurosci.5, 513–514 (2002). CASPubMed Google Scholar
Zhu, J. J., Esteban, J. A., Hayashi, Y. & Malinow, R. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nature Neurosci.3, 1098–1106 (2000). This study showed that GluR4-containing AMPA receptors are recruited to synapses in response to spontaneous synaptic activity that required the activation of NMDA receptors, but not CaMKII. CASPubMed Google Scholar
Passafaro, M., Nakagawa, T., Sala, C. & Sheng, M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature424, 677–681 (2003). The extracellular amino-terminal domain of AMPA-receptor-subunit GluR2 is shown to be important for promoting dendritic-spine formation and growth. CASPubMed Google Scholar
Bozdagi, O., Shan, W., Tanaka, H., Benson, D. L. & Huntley, G. W. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron28, 245–259 (2000). CASPubMed Google Scholar
Murase, S., Mosser, E. & Schuman, E. M. Depolarization drives β-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron35, 91–105 (2002). CASPubMed Google Scholar
Liu, G. Presynaptic control of quantal size: kinetic mechanisms and implications for synaptic transmission and plasticity. Curr. Opin. Neurobiol.13, 324–331 (2003). CASPubMed Google Scholar
Renger, J. J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron29, 469–484 (2001). CASPubMed Google Scholar
Patneau, D. K. & Mayer, M. L. Structure–activity relationships for amino acid transmitter candidates acting at _N_-methyl-D-aspartate and quisqualate receptors. J. Neurosci.10, 2385–2399 (1990). CASPubMedPubMed Central Google Scholar
Wu, G. Y. & Cline, H. T. Stabilization of dendritic arbor structure in vivo by CaMKII. Science279, 222–226 (1998). CASPubMed Google Scholar
Zou, D. J. & Cline, H. T. Postsynaptic calcium/calmodulin-dependent protein kinase II is required to limit elaboration of presynaptic and postsynaptic neuronal arbors. J. Neurosci.19, 8909–8918 (1999). CASPubMedPubMed Central Google Scholar
Ben-Ari, Y. Excitatory actions of gaba during development: the nature of the nurture. Nature Rev. Neurosci.3, 728–739 (2002). CAS Google Scholar
Ganguly, K., Schinder, A. F., Wong, S. T. & Poo, M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell105, 521–532 (2001). CASPubMed Google Scholar
Rohrbough, J. & Spitzer, N. C. Regulation of intracellular Cl− levels by Na(+)-dependent Cl− cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons. J. Neurosci.16, 82–91 (1996). CASPubMedPubMed Central Google Scholar
Rivera, C. et al. The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature397, 251–255 (1999). CASPubMed Google Scholar
Leinekugel, X., Medina, I., Khalilov, I., Ben-Ari, Y. & Khazipov, R. Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron18, 243–255 (1997). CASPubMed Google Scholar
Tyzio, R. et al. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J. Neurosci.19, 10372–10382 (1999). CASPubMedPubMed Central Google Scholar
Khazipov, R. et al. Early development of neuronal activity in the primate hippocampus in utero. J. Neurosci.21, 9770–9781 (2001). CASPubMedPubMed Central Google Scholar
Cohen-Cory, S. The developing synapse: construction and modulation of synaptic structures and circuits. Science298, 770–776 (2002). CASPubMed Google Scholar
Augustin, I., Rosenmund, C., Sudhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature400, 457–461 (1999). CASPubMed Google Scholar
Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl Acad. Sci. USA99, 9037–9042 (2002). CASPubMedPubMed Central Google Scholar
Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science287, 864–869 (2000). In references 87 and 88, morphologically normal synapses are observed in the brains of mice that are deficient for synaptic transmission. CASPubMed Google Scholar
O'Brien, R. et al. Synaptically targeted narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons. J. Neurosci.22, 4487–4498 (2002). CASPubMedPubMed Central Google Scholar
O'Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron23, 309–323 (1999). CASPubMed Google Scholar
Aberle, H. et al. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron33, 545–558 (2002). CASPubMed Google Scholar
Marques, G. et al. The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron33, 529–543 (2002). CASPubMed Google Scholar
Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell111, 319–330 (2002). CASPubMedPubMed Central Google Scholar
Hall, A. C., Lucas, F. R. & Salinas, P. C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell100, 525–535 (2000). CASPubMed Google Scholar
Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science291, 657–661 (2001). This study shows that, in the absence of glia, cultured neurons form sparse and functionally immature synapses. Glia are therefore crucial for synaptogenesis and synapse maturation. CASPubMed Google Scholar
Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro. Science277, 1684–1687 (1997). CASPubMed Google Scholar
Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science294, 1354–1357 (2001). CASPubMed Google Scholar
Hering, H., Lin, C. C. & Sheng, M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J. Neurosci.23, 3262–3271 (2003). CASPubMedPubMed Central Google Scholar
Beattie, E. C. et al. Control of synaptic strength by glial TNFα. Science295, 2282–2285 (2002). CASPubMed Google Scholar