The biogenesis of multivesicular endosomes (original) (raw)
References
Trump, B. F., Goldblatt, P. J. & Stowell, R. E. Studies of necrosis in vitro of mouse hepatic parenchymal cells. Ultrastructural and cytochemical alterations of cytosomes, cytosegresomes, multivesicular bodies, and microbodies and their relation to the lysosome concept. Lab. Invest.14, 1946–1968 (1965). CASPubMed Google Scholar
Helenius, A., Mellman, I., Wall, D. & Hubbard, A. Endosomes. Trends Biochem. Sci.8, 245–250 (1983). ArticleCAS Google Scholar
Geuze, H. J., Slot, J. W., Strous, G. J., Lodish, H. F. & Schwartz, A. L. Intracellular site of asialoglycoprotein receptor–ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell32, 277–287 (1983). ArticleCASPubMed Google Scholar
Miller, K., Beardmore, J., Kanety, H., Schlessinger, J. & Hopkins, C. R. Localization of the epidermal growth factor (EGF) receptor within the endosome of EGF-stimulated epidermoid carcinoma (A431) cells. J. Cell Biol.102, 500–509 (1986). ArticleCASPubMed Google Scholar
Mueller, S. C. & Hubbard, A. L. Receptor-mediated endocytosis of asialoglycoproteins by rat hepatocytes: receptor-positive and receptor-negative endosomes. J. Cell Biol.102, 932–942 (1986). ArticleCASPubMed Google Scholar
Gruenberg, J., Griffiths, G. & Howell, K. E. Characterisation of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J. Cell Biol.108, 1301–1316 (1989). ArticleCASPubMed Google Scholar
Griffiths, G., Hoflack, B., Simons, K., Mellman, I. & Kornfeld, S. The mannose-6-phosphate receptor and the biogenesis of lysosomes. Cell52, 329–341 (1988). ArticleCASPubMed Google Scholar
Gruenberg, J. The endocytic pathway: a mosaic of domains. Nature Rev. Mol. Cell Biol.2, 721–730 (2001). ArticleCAS Google Scholar
Dunn, K. W., McGraw, T. E. & Maxfield, F. R. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J. Cell Biol.109, 3303–3314 (1989). ArticleCASPubMed Google Scholar
Yamashiro, D. J., Tycko, B., Fluss, S. R. & Maxfield, F. R. Segregation of transferrin to a mildly acidic (pH 6.4) para-Golgi compartment in the recycling pathway. Cell37, 789–800 (1984). ArticleCASPubMed Google Scholar
Felder, S. et al. Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell61, 623–634 (1990). ArticleCASPubMed Google Scholar
Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol.3, 893–905 (2002). ArticleCAS Google Scholar
Gruenberg, J. & Maxfield, F. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol.7, 552–563 (1995). ArticleCASPubMed Google Scholar
Mukherjee, S. & Maxfield, F. R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic1, 203–211 (2000). ArticleCASPubMed Google Scholar
Parton, R. G., Simons, K. & Dotti, C. G. Axonal and dentritic endocytic pathways in cultured neurons. J. Cell Biol.119, 123–137 (1992). ArticleCASPubMed Google Scholar
Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol.123, 1373–1388 (1993). ArticleCASPubMed Google Scholar
Bomsel, M., Parton, R., Kuznetsov, S. A., Schroer, T. A. & Gruenberg, J. Microtubule and motor dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell62, 719–731 (1990). ArticleCASPubMed Google Scholar
Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure/function. Nature392, 193–197 (1998). ArticleCASPubMed Google Scholar
Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science303, 531–534 (2004). ArticleCASPubMed Google Scholar
Goda, Y. & Pfeffer, S. R. Selective recycling of the mannose 6-phosphate/IGF-II receptor to the TGN in vitro. Cell55, 309–320 (1988). ArticleCASPubMed Google Scholar
Murk, J. L., Stoorvogel, W., Kleijmeer, M. J. & Geuze, H. J. The plasticity of multivesicular bodies and the regulation of antigen presentation. Semin. Cell Dev. Biol.13, 303–311 (2002). ArticleCASPubMed Google Scholar
Prescianotto-Baschong, C. & Riezman, H. Ordering of compartments in the yeast endocytic pathway. Traffic3, 37–49 (2002). ArticlePubMed Google Scholar
Escola, J. M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem.273, 20121–20127 (1998). ArticleCASPubMed Google Scholar
Umeda, A. et al. Distribution and trafficking of MPR300 is normal in cells with cholesterol accumulated in late endocytic compartments: evidence for early endosome-to-TGN trafficking of MPR300 in NPC fibroblasts. J. Lipid Res.44, 1821–1832 (2003). ArticleCASPubMed Google Scholar
Seaman, M. N., Marcusson, E. G., Cereghino, J. L. & Emr, S. D. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J. Cell Biol.137, 79–92 (1997). ArticleCASPubMedPubMed Central Google Scholar
Mukherjee, S., Soe, T. T. & Maxfield, F. R. Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell Biol.144, 1271–1284 (1999). ArticleCASPubMedPubMed Central Google Scholar
Petiot, A., Fauré, J., Stenmark, H. & Gruenberg, J. PI3P signaling regulates receptor sorting but not transport in the endosomal pathway. J. Cell Biol.162, 971–979 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fernandez-Borja, M. et al. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr. Biol.9, 55–58 (1999). ArticleCASPubMed Google Scholar
Futter, C. E., Collinson, L. M., Backer, J. M. & Hopkins, C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol.155, 1251–1264 (2001). ArticleCASPubMedPubMed Central Google Scholar
Komada, M. & Soriano, P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev.13, 1475–1485 (1999). ArticleCASPubMedPubMed Central Google Scholar
Urbe, S., Mills, I. G., Stenmark, H., Kitamura, N. & Clague, M. J. Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol. Cell Biol.20, 7685–7692 (2000). ArticleCASPubMedPubMed Central Google Scholar
Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci.114, 2255–2263 (2001). CASPubMed Google Scholar
Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J.20, 5008–5021 (2001). ArticleCASPubMedPubMed Central Google Scholar
Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol.4, 394–398 (2002). ArticleCASPubMed Google Scholar
Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell13, 1313–1328 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol.2, 195–201 (2001). ArticleCAS Google Scholar
Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol.4, 534–539 (2002). ArticleCASPubMed Google Scholar
Lloyd, T. E. et al. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell108, 261–269 (2002). ArticleCASPubMed Google Scholar
Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol.162, 435–442 (2003). ArticleCASPubMedPubMed Central Google Scholar
Babst, M., Odorizzi, G., Estepa, E. J. & Emr, S. D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic1, 248–258 (2000). ArticleCASPubMed Google Scholar
Bishop, N., Horman, A. & Woodman, P. Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein–ubiquitin conjugates. J. Cell Biol.157, 91–101 (2002). ArticleCASPubMedPubMed Central Google Scholar
Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol.162, 413–423 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lu, Q., Hope, L. W., Brasch, M., Reinhard, C. & Cohen, S. N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA100, 7626–7631 (2003). ArticleCASPubMedPubMed Central Google Scholar
Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Med.7, 1313–1319 (2001). ArticleCASPubMed Google Scholar
Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell107, 55–65 (2001). ArticleCASPubMed Google Scholar
Pelchen-Matthews, A., Kramer, B. & Marsh, M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol.162, 443–455 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sbrissa, D., Ikonomov, O. C. & Shisheva, A. Phosphatidylinositol 3-phosphate-interacting domains in PIKfyve. Binding specificity and role in PIKfyve. Endomembrane localization. J. Biol. Chem.277, 6073–6079 (2002). ArticleCASPubMed Google Scholar
Odorizzi, G., Babst, M. & Emr, S. D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell95, 847–858 (1998). ArticleCASPubMed Google Scholar
Ikonomov, O. C. et al. Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns 3,5-P2 production for endomembrane integrity. J. Biol. Chem.277, 9206–9211 (2002). ArticleCASPubMed Google Scholar
Reggiori, F. & Pelham, H. R. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies. Nature Cell Biol.4, 117–123 (2002). ArticleCASPubMed Google Scholar
Whitley, P. et al. Identification of mammalian Vps24p as an effector of phosphatidylinositol 3,5 bisphosphate dependent endosome compartmentalization. J. Biol. Chem.278, 38786–38795 (2003). ArticleCASPubMed Google Scholar
Mayran, M., Parton, R. G. & Gruenberg, J. Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J.13, 3242–3253 (2003). Article Google Scholar
Zobiack, N., Rescher, U., Ludwig, C., Zeuschner, D. & Gerke, V. The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol. Biol. Cell14, 4896–4908 (2003). ArticleCASPubMedPubMed Central Google Scholar
Emans, N. et al. Annexin II is a major component of fusogenic endosomal vesicles. J. Cell Biol.120, 1357–1370 (1993). ArticleCASPubMed Google Scholar
Harder, T. & Gerke, V. The subcellular distribution of early endosomes is affected by the annexin II2p11(2) complex. J. Cell Biol.123, 1119–1132 (1993). ArticleCASPubMed Google Scholar
Gerke, V. & Moss, S. E. Annexins: from structure to function. Physiol. Rev.82, 331–371 (2002). ArticleCASPubMed Google Scholar
Babiychuk, E. B. & Draeger, A. Annexins in cell membrane dynamics. Ca(2+)-regulated association of lipid microdomains. J. Cell Biol.150, 1113–1124 (2000). ArticleCASPubMedPubMed Central Google Scholar
Harder, T., Kellner, R., Parton, R. G. & Gruenberg, J. Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol. Biol. Cell8, 533–545 (1997). ArticleCASPubMedPubMed Central Google Scholar
Oling, F., Bergsma-Schutter, W. & Brisson, A. Trimers, dimers of trimers, and trimers of trimers are common building blocks of annexin a5 two-dimensional crystals. J. Struct. Biol.133, 55–63 (2001). ArticleCASPubMed Google Scholar
Oliferenko, S. et al. Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J. Cell Biol.146, 843–854 (1999). ArticleCASPubMedPubMed Central Google Scholar
Steinman, R. M., Mellman, I. S., Muller, W. A. & Cohn, Z. A. Endocytosis and the recycling of plasma membrane. J. Cell Biol.96, 1–27 (1983). ArticleCASPubMed Google Scholar
Lafont, F., Lecat, S., Verkade, P. & Simons, K. Annexin XIIIb associates with lipid microdomains to function in apical delivery. J. Cell Biol.142, 1413–1427 (1998). ArticleCASPubMedPubMed Central Google Scholar
Aniento, F., Gu, F., Parton, R. & Gruenberg, J. An endosomal βcop is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J. Cell Biol.133, 29–41 (1996). ArticleCASPubMed Google Scholar
Gu, F., Aniento, F., Parton, R. & Gruenberg, J. Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. J. Cell Biol.139, 1183–1195 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gu, F. & Gruenberg, J. ARF1 regulates pH-dependent COP functions in the early endocytic pathway. J. Biol. Chem.275, 8154–8160 (2000). ArticleCASPubMed Google Scholar
Daro, E., Sheff, D., Gomez, M., Kreis, T. & Mellman, I. Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COPI) component εCOP. J. Cell Biol.139, 1747–1759 (1997). ArticleCASPubMedPubMed Central Google Scholar
Whitney, J. A., Gomez, M., Sheff, D., Kreis, T. E. & Mellman, I. Cytoplasmic coat proteins involved in endosome function. Cell83, 703–713 (1995). ArticleCASPubMed Google Scholar
Press, B., Feng, Y., Hoflack, B. & Wandinger-Ness, A. Mutant Rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment. J. Cell Biol.140, 1075–1089 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol.2, 107–117 (2001). CAS Google Scholar