Kuriyan, J. & Cowburn, D. Modular peptide recognition domains in eukaryotic signaling. Annu. Rev. Biophys. Biomol. Struct.26, 259–288 (1997). ArticleCASPubMed Google Scholar
Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science300, 445–452 (2003). ArticleCASPubMed Google Scholar
Weissman, A. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol.2, 169–178 (2001). ArticleCAS Google Scholar
Pickart, C. M. & Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta1695, 55–72 (2004). ArticleCASPubMed Google Scholar
Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol.19, 141–172 (2003). ArticleCASPubMed Google Scholar
DiAntonio, A. & Hicke, L. Ubiquitin-dependent regulation of the synapse. Annu. Rev. Neurosci.27, 223–246 (2004). ArticleCASPubMed Google Scholar
Muratani, M. & Tansey, W. P. How the ubiquitin–proteasome system controls transcription. Nature Rev. Mol. Cell Biol.4, 192–201 (2003). ArticleCAS Google Scholar
Sun, L. & Chen, Z. J. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol.16, 119–126 (2004). ArticleCASPubMed Google Scholar
Young, P., Deveraux, Q., Beal, R. E., Pickart, C. M. & Rechsteiner, M. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem.273, 5461–5467 (1998). Describes the first identification and definition of a ubiquitin-binding domain, the sequence in the S5a subunit of the proteasome, which provided the basis for the UIM. ArticleCASPubMed Google Scholar
Hofmann, K. & Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci.26, 347–350 (2001). The results of a bioinformatics approach that was based on the proteasomal S5a ubiquitin-binding sequence and resulted in the identification of the UIM. ArticleCASPubMed Google Scholar
Donaldson, K. M. et al. Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc. Natl Acad. Sci. USA100, 8892–8897 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p–Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol.4, 534–539 (2002). ArticleCASPubMed Google Scholar
Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature416, 451–455 (2002). Shows a link between UIMs and the monoubiquitylation of proteins that contain them. ArticleCASPubMed Google Scholar
Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol.4, 394–398 (2002). ArticleCASPubMed Google Scholar
Shih, S. C. et al. Epsins and Vps27/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biol.4, 389–393 (2002). ArticleCASPubMed Google Scholar
Hofmann, K. & Bucher, P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci.21, 172–173 (1996). ArticleCASPubMed Google Scholar
Bertolaet, B. L. et al. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nature Struct. Biol.8, 417–422 (2001). ArticleCASPubMed Google Scholar
Wilkinson, C. R. et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nature Cell Biol.3, 939–943 (2001). ArticleCASPubMed Google Scholar
Donaldson, K. M., Yin, H., Gekakis, N., Supek, F. & Joazeiro, C. A. Ubiquitin signals protein trafficking via interaction with a novel ubiquitin binding domain in the membrane fusion regulator, Vps9p. Curr. Biol.13, 258–262 (2003). ArticleCASPubMed Google Scholar
Hook, S. S., Orian, A., Cowley, S. M. & Eisenman, R. N. Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc. Natl Acad. Sci. USA99, 13425–13430 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yamakami, M., Yoshimori, T. & Yokosawa, H. Tom1, a VHS domain-containing protein, interacts with Tollip, ubiquitin, and clathrin. J. Biol. Chem.278, 52865–52872 (2003). ArticleCASPubMed Google Scholar
Scott, P. M. et al. GGA proteins bind ubiquitin to facilitate sorting at the _trans_-Golgi network. Nature Cell Biol.6, 252–259 (2004). ArticleCASPubMed Google Scholar
Shiba, Y. et al. GAT (GGA and Tom1) domain responsible for ubiquitin binding and ubiquitination. J. Biol. Chem.279, 7105–7111 (2004). ArticleCASPubMed Google Scholar
Seigneurin-Berny, D. et al. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol. Cell. Biol.21, 8035–8044 (2001). ArticleCASPubMedPubMed Central Google Scholar
Meyer, H. H., Wang, Y. & Warren, G. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1–Npl4. EMBO J.21, 5645–5652 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell15, 535–548 (2004). ArticleCASPubMed Google Scholar
Mizuno, E., Kawahata, K., Kato, M., Kitamura, N. & Komada, M. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol. Biol. Cell14, 3675–3689 (2003). ArticleCASPubMedPubMed Central Google Scholar
Slagsvold, T. et al. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem.280, 19600–19606 (2005). ArticleCASPubMed Google Scholar
Fisher, R. D. et al. Structure and ubiquitin binding of the ubiquitin-interacting motif. J. Biol. Chem.278, 28976–28984 (2003). ArticleCASPubMed Google Scholar
Davies, G. C. et al. Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene23, 7104–7115 (2004). ArticleCASPubMed Google Scholar
Miller, S. L., Malotky, E. & O'Bryan, J. P. Analysis of the role of ubiquitin-interacting motifs (UIMs) in ubiquitin binding and ubiquitylation. J. Biol. Chem.279, 33528–33537 (2004). ArticleCASPubMed Google Scholar
Walters, K. J., Lech, P. J., Goh, A. M., Wang, Q. & Howley, P. M. DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a. Proc. Natl Acad. Sci. USA100, 12694–12699 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tanaka, T., Kawashima, H., Yeh, E. T. & Kamitani, T. Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L. J. Biol. Chem.278, 32905–32913 (2003). ArticleCASPubMed Google Scholar
Raasi, S., Orlov, I., Fleming, K. G. & Pickart, C. M. Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J. Mol. Biol.341, 1367–1379 (2004). ArticleCASPubMed Google Scholar
Seibenhener, M. L. et al. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol.24, 8055–8068 (2004). ArticleCASPubMedPubMed Central Google Scholar
Elsasser, S. & Finley, D. Delivery of ubiquitin conjugates to protein-unfolding machines. Nature Cell Biol. (in the press).
Katoh, Y. et al. Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. J. Biol. Chem.279, 24435–24443 (2004). ArticleCASPubMed Google Scholar
Kang, R. S. et al. Solution structure of a CUE–ubiquitin complex reveals a conserved mode of ubiquitin-binding. Cell113, 621–630 (2003). ArticleCASPubMed Google Scholar
Swanson, K. A., Kang, R. S., Stamenova, S. D., Hicke, L. & Radhakrishnan, I. Solution structure of Vps27 UIM–ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J.22, 4597–4606 (2003). ArticleCASPubMedPubMed Central Google Scholar
de Beer, T., Carter, R. E., Lobel-Rice, K. E., Sorkin, A. & Overduin, M. Structure and Asn-Pro-Phe binding pocket of the Eps15 homology domain. Science281, 1357–1360 (1998). ArticleCASPubMed Google Scholar
Yamabhai, M. et al. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem.273, 31401–31407 (1998). ArticleCASPubMed Google Scholar
Miele, A. E., Watson, P. J., Evans, P. R., Traub, L. M. & Owen, D. J. Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller. Nature Struct. Mol. Biol.11, 242–248 (2004). ArticleCAS Google Scholar
Praefcke, G. J. et al. Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis. EMBO J.23, 4371–4383 (2004). ArticleCASPubMedPubMed Central Google Scholar
Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal sorting complex, ESCRT-I. Cell106, 145–155 (2001). ArticleCASPubMed Google Scholar
Lim, W. A. The modular logic of signaling proteins: building allosteric switches from simple binding domains. Curr. Opin. Struct. Biol.12, 61–68 (2002). ArticleCASPubMed Google Scholar
Haas, A. L. & Bright, P. M. The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J. Biol. Chem.260, 12464–12473 (1985). CASPubMed Google Scholar
Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell111, 1041–1054 (2002). ArticleCASPubMed Google Scholar
Withers-Ward, E. S., Mueller, T. D., Chen, I. S. & Feigon, J. Biochemical and structural analysis of the interaction between the UBA(2) domain of the DNA repair protein HHR23A and HIV-1 Vpr. Biochemistry39, 14103–14112 (2000). ArticleCASPubMed Google Scholar
Bertolaet, B. L. et al. UBA domains mediate protein–protein interactions between two DNA damage-inducible proteins. J. Mol. Biol.313, 955–963 (2001). ArticleCASPubMed Google Scholar
Ohno, A. et al. Structure of the UBA domain of Dsk2p in complex with ubiquitin: molecular determinants for ubiquitin recognition. Structure13, 521–532 (2005). ArticleCASPubMed Google Scholar
Prag, G. et al. Mechanism of ubiquitin recognition by the CUE domain of Vps9p. Cell113, 609–620 (2003). ArticleCASPubMed Google Scholar
Mueller, T. D., Kamionka, M. & Feigon, J. Specificity of the interaction between ubiquitin-associated domains and ubiquitin. J. Biol. Chem.279, 11926–11936 (2004). ArticleCASPubMed Google Scholar
Sundquist, W. I. et al. Ubiquitin recognition by the human TSG101 protein. Mol. Cell13, 783–789 (2004). ArticleCASPubMed Google Scholar
Teo, H., Veprintsev, D. B. & Williams, R. L. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J. Biol. Chem.279, 28689–28696 (2004). ArticleCASPubMed Google Scholar
VanDemark, A. P., Hofmann, R. M., Tsui, C., Pickart, C. M. & Wolberger, C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell105, 711–720 (2001). ArticleCASPubMed Google Scholar
McKenna, S. et al. An NMR-based model of the ubiquitin-bound human ubiquitin conjugation complex Mms2–Ubc13: the structural basis for lysine 63 chain catalysis. J. Biol. Chem.278, 13151–13158 (2003). ArticleCASPubMed Google Scholar
Miura, T., Klaus, W., Gsell, B., Miyamoto, C. & Senn, H. Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution. J. Mol. Biol.290, 213–228 (1999). ArticleCASPubMed Google Scholar
Hamilton, K. S. et al. Structure of a conjugating enzyme–ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure9, 897–904 (2001). ArticleCASPubMed Google Scholar
Bilodeau, P. S., Winistorfer, S. C., Kearney, W. R., Robertson, A. D. & Piper, R. C. Vps27–Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J. Cell Biol.163, 237–243 (2003). ArticleCASPubMedPubMed Central Google Scholar
Johnston, S. C., Riddle, S. M., Cohen, R. E. & Hill, C. P. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J.18, 3877–3887 (1999). ArticleCASPubMedPubMed Central Google Scholar
Walden, H., Podgorski, M. S. & Schulman, B. A. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature422, 330–334 (2003). ArticleCASPubMed Google Scholar
Klapisz, E. et al. A ubiquitin-interacting motif (UIM) is essential for Eps15 and Eps15R ubiquitination. J. Biol. Chem.277, 30746–30753 (2002). ArticleCASPubMed Google Scholar
Oldham, C. E., Mohney, R. P., Miller, S. L., Hanes, R. N. & O'Bryan, J. P. The ubiquitin-interacting motifs target the endocytic adaptor protein epsin for ubiquitination. Curr. Biol.12, 1112–1116 (2002). ArticleCASPubMed Google Scholar
Davies, B. A. et al. Vps9p CUE domain ubiquitin binding is required for efficient endocytic protein traffic. J. Biol. Chem.278, 19826–19833 (2003). ArticleCASPubMed Google Scholar
Katz, M. et al. Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and Hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4. Traffic3, 740–751 (2002). ArticleCASPubMed Google Scholar
Saito, T., Mitsui, K., Hamada, Y. & Tsurugi, K. Regulation of the Gts1p level by the ubiquitination system to maintain metabolic oscillations in the continuous culture of yeast. J. Biol. Chem.277, 33624–33631 (2002). ArticleCASPubMed Google Scholar
Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotechnol.21, 921–926 (2003). ArticleCAS Google Scholar
Amit, I. et al. Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding. Genes Dev.18, 1737–1752 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lammer, D. et al. Modification of yeast Cdc53p by the ubiquitin-related protein Rub1p affects function of the SCFCdc4 complex. Genes Dev.12, 914–926 (1998). ArticleCASPubMedPubMed Central Google Scholar
Magnifico, A. et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J. Biol. Chem.278, 43169–43177 (2003). ArticleCASPubMed Google Scholar
Chen, H., Polo, S., Di Fiore, P. P. & De Camilli, P. V. Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proc. Natl Acad. Sci. USA100, 14908–14913 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chen, X., Zhang, B. & Fischer, J. A. A specific protein substrate for a deubiquitinating enzyme: Liquid facets is the substrate of Fat facets. Genes Dev.16, 289–294 (2002). ArticleCASPubMedPubMed Central Google Scholar
Di Fiore, P. P., Polo, S. & Hofmann, K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nature Rev. Mol. Cell Biol.4, 491–497 (2003). ArticleCAS Google Scholar
Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J. & Finley, D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem.279, 26817–26822 (2004). ArticleCASPubMed Google Scholar
Verma, R., Oania, R., Graumann, J. & Deshaies, R. J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin–proteasome system. Cell118, 99–110 (2004). ArticleCASPubMed Google Scholar
Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26S protease subunit that binds ubiquitin conjugates. J. Biol. Chem.269, 7059–7061 (1994). CASPubMed Google Scholar
Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L. & Pickart, C. M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature416, 763–767 (2002). ArticleCASPubMed Google Scholar
Schauber, C. et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature391, 715–718 (1998). ArticleCASPubMed Google Scholar
Puertollano, R. & Bonifacino, J. S. Interactions of GGA3 with the ubiquitin sorting machinery. Nature Cell Biol.6, 244–251 (2004). ArticleCASPubMed Google Scholar
Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol.3, 893–905 (2002). ArticleCAS Google Scholar
Raiborg, C., Rusten, T. E. & Stenmark, H. Protein sorting into multivesicular endosomes. Curr. Opin. Cell Biol.15, 446–455 (2003). ArticleCASPubMed Google Scholar
Reggiori, F. & Pelham, H. R. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J.20, 5176–5186 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dai, R. M. & Li, C. C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin–proteasome degradation. Nature Cell Biol.3, 740–744 (2001). ArticleCASPubMed Google Scholar
Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48UFD1/NPL4, a ubiquitin-selective chaperone. Cell107, 667–677 (2001). ArticleCASPubMed Google Scholar
Ye, Y., Meyer, H. H. & Rapoport, T. A. Function of the p97–Ufd1–Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol.162, 71–84 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hannich, J. T. et al. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem.280, 4102–4110 (2005). ArticleCASPubMed Google Scholar
Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl Acad. Sci. USA101, 14373–14378 (2004). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, H., Hatakeyama, S., Saitoh, H. & Nakayama, K. I. Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J. Biol. Chem.280, 5611–5621 (2005). ArticleCASPubMed Google Scholar
Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta1695, 189–207 (2004). ArticleCASPubMed Google Scholar
Prag, G. et al. Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, γ-ear-containing, ADP-ribosylation-factor-binding proteins. Proc. Natl Acad. Sci. USA102, 2334–2339 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ponting, C. P. Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction. Biochem. J.351, 527–535 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bilodeau, P. S. et al. The GAT domains of clathrin-associated GGA proteins have two ubiquitin binding motifs. J. Biol. Chem.279, 54808–54816 (2004). ArticleCASPubMed Google Scholar
Wang, B. et al. Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4. J. Biol. Chem.278, 20225–20234 (2003). ArticleCASPubMed Google Scholar
Mueller, T. D. & Feigon, J. Solution structures of UBA domains reveal a conserved hydrophobic surface for protein–protein interactions. J. Mol. Biol.319, 1243–1255 (2002). ArticleCASPubMed Google Scholar
Chim, N. et al. Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae. Proteins54, 784–793 (2004). ArticleCASPubMed Google Scholar
Merkley, N. & Shaw, G. S. Solution structure of the flexible class II ubiquitin-conjugating enzyme Ubc1 provides insights for polyubiquitin chain assembly. J. Biol. Chem.279, 47139–47147 (2004). ArticleCASPubMed Google Scholar
Shekhtman, A. & Cowburn, D. A ubiquitin-interacting motif from Hrs binds to and occludes the ubiquitin surface necessary for polyubiquitination in monoubiquitinated proteins. Biochem. Biophys. Res. Commun.296, 1222–1227 (2002). ArticleCASPubMed Google Scholar
Cadwell, K. & Coscoy, L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science309, 127–130 (2005). ArticleCASPubMed Google Scholar