The diverse functions of histone lysine methylation (original) (raw)
Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell98, 285–294 (1999). ArticleCASPubMed Google Scholar
van Holde, K. E. in Chromatin (ed. Rich, A.) 1–148 (Springer, New York, 1988). Google Scholar
Bannister, A. J. & Kouzarides, T. Reversing histone methylation. Nature436, 1103–1106 (2005). ArticleCASPubMed Google Scholar
Lachner, M., O'Sullivan, R. J. & Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci.116, 2117–2124 (2003). ArticleCASPubMed Google Scholar
Margueron, R., Trojer, P. & Reinberg, D. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev.15, 163–176 (2005). ArticleCASPubMed Google Scholar
Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev.15, 2343–2360 (2001). ArticleCASPubMed Google Scholar
Bedford, M. T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell18, 263–272 (2005). ArticleCASPubMed Google Scholar
Stallcup, M. R. Role of protein methylation in chromatin remodeling and transcriptional regulation. Oncogene20, 3014–3020 (2001). ArticleCASPubMed Google Scholar
Hansen, J. C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct.31, 361–392 (2002). ArticleCASPubMed Google Scholar
Carruthers, L. M. & Hansen, J. C. The core histone N termini function independently of linker histones during chromatin condensation. J. Biol. Chem.275, 37285–37290 (2000). ArticleCASPubMed Google Scholar
Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature399, 491–496 (1999). ArticleCASPubMed Google Scholar
Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science288, 1422–1425 (2000). ArticleCASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). ArticleCASPubMed Google Scholar
Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev.17, 1870–1881 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). ArticleCASPubMed Google Scholar
Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev.17, 1823–1828 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R., 3rd & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature433, 434–438 (2005). The first demonstration of a protein capable of binding directly to methyl-H3-K4. ArticleCASPubMed Google Scholar
Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature432, 406–411 (2004). Established the tudor domain as a methyl-lysine binding motif and a link between H3-K79 methylation and DNA repair processes. ArticleCASPubMed Google Scholar
Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell119, 603–614 (2004). ArticleCASPubMed Google Scholar
Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3-K4 methylation and vertebrate development. Cell121, 859–872 (2005). Shows that the WD40-repeat domain within WDR5 binds specifically to dimethyl-H3-K4 and that this interaction is important for H3-K4 methylation. ArticleCASPubMed Google Scholar
Kurdistani, S. K. & Grunstein, M. Histone acetylation and deacetylation in yeast. Nature Rev. Mol.Cell Biol.4, 276–284 (2003). ArticleCAS Google Scholar
Henikoff, S. Histone modifications: combinatorial complexity or cumulative simplicity? Proc. Natl Acad. Sci. USA102, 5308–5309 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev.18, 1263–1271 (2004). ArticlePubMedPubMed Central Google Scholar
Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell120, 169–181 (2005). ArticleCASPubMed Google Scholar
Lindroth, A. M. et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J.23, 4286–4296 (2004). ArticleCASPubMed Google Scholar
Mateescu, B., England, P., Halgand, F., Yaniv, M. & Muchardt, C. Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep.5, 490–496 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sun, Z. W. & Allis, C. D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature418, 104–108 (2002). ArticleCASPubMed Google Scholar
Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell93, 325–328 (1998). ArticleCASPubMed Google Scholar
Pidoux, A. L. & Allshire, R. C. The role of heterochromatin in centromere function. Philos. Trans. R. Soc. Lond. B Biol. Sci.360, 569–579 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jia, S., Yamada, T. & Grewal, S. I. Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell119, 469–480 (2004). Demonstrates the role of heterochromatin and H3-K9 methylation in cell-type-specific spreading of proteins involved in recombination. ArticleCASPubMed Google Scholar
Wakimoto, B. T. Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell93, 321–324 (1998). ArticleCASPubMed Google Scholar
Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J.13, 3822–3831 (1994). ArticleCASPubMedPubMed Central Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000). ArticleCASPubMed Google Scholar
Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J.18, 1923–1938 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001). ArticleCASPubMed Google Scholar
Ekwall, K. et al. Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J. Cell Sci.109, 2637–2648 (1996). CASPubMed Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). ArticleCASPubMed Google Scholar
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science297, 2232–2237 (2002). ArticleCASPubMed Google Scholar
Motamedi, M. R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell119, 789–802 (2004). ArticleCASPubMed Google Scholar
Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S. I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA102, 152–157 (2005). This paper showed the interdependence between complexes that mediate heterochromatin formation. ArticleCASPubMed Google Scholar
Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet.36, 1174–1180 (2004). ArticleCASPubMed Google Scholar
Partridge, J. F., Scott, K. S., Bannister, A. J., Kouzarides, T. & Allshire, R. C. _cis_-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr. Biol.12, 1652–1660 (2002). ArticleCASPubMed Google Scholar
Partridge, J. F., Borgstrom, B. & Allshire, R. C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev.14, 783–791 (2000). CASPubMedPubMed Central Google Scholar
Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell12, 1577–1589 (2003). ArticleCASPubMed Google Scholar
Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol.Cell12, 1591–1598 (2003). ArticleCASPubMed Google Scholar
Schotta, G. et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev.18, 1251–1262 (2004). ArticleCASPubMedPubMed Central Google Scholar
Eissenberg, J. C. & Elgin, S. C. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev.10, 204–210 (2000). ArticleCASPubMed Google Scholar
Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev.19, 815–826 (2005). Shows that two methyltransferases cooperate to mediate the bulk of euchromatic H3-K9 methylation. ArticleCASPubMedPubMed Central Google Scholar
Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev.16, 1779–1791 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature412, 561–565 (2001). ArticleCASPubMed Google Scholar
Ait-Si-Ali, S. et al. A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J.23, 605–615 (2004). ArticleCASPubMedPubMed Central Google Scholar
Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 Lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell19, 381–391 (2005). ArticleCASPubMed Google Scholar
Weiler, K. S. & Wakimoto, B. T. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet.29, 577–605 (1995). ArticleCASPubMed Google Scholar
Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev.14, 155–164 (2004). ArticleCASPubMed Google Scholar
Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet.38, 413–443 (2004). ArticleCASPubMed Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039–1043 (2002). ArticleCASPubMed Google Scholar
Czermin, B. et al. Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell111, 185–196 (2002). ArticleCASPubMed Google Scholar
Muller, J. et al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell111, 197–208 (2002). ArticleCASPubMed Google Scholar
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev.16, 2893–2905 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, L. et al. Hierarchical recruitment of polycomb group silencing complexes. Mol. Cell14, 637–646 (2004). ArticleCASPubMed Google Scholar
Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell98, 37–46 (1999). ArticleCASPubMed Google Scholar
Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature431, 873–878 (2004). Identifies the enzyme responsible for H2A ubiquitylation and shows that this modification is required for Polycomb gene silencing. ArticleCASPubMed Google Scholar
Heard, E. Recent advances in X-chromosome inactivation. Curr. Opin. Cell Biol.16, 247–255 (2004). ArticleCASPubMed Google Scholar
Mak, W. et al. Reactivation of the paternal X chromosome in early mouse embryos. Science303, 666–669 (2004). References 68 and 69 demonstrate that X-inactivation is dynamic in that imprinted X inactivation is reversed in the developing embryo followed by random X inactivation. Google Scholar
Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science303, 644–649 (2004). ArticleCASPubMed Google Scholar
de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell7, 663–676 (2004). ArticleCASPubMed Google Scholar
Fang, J., Chen, T., Chadwick, B., Li, E. & Zhang, Y. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J. Biol. Chem.279, 52812–52815 (2004). ArticleCASPubMed Google Scholar
Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science300, 131–135 (2003). ArticleCASPubMed Google Scholar
Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed–Enx1 polycomb group complexes. Dev. Cell4, 481–495 (2003). ArticleCASPubMed Google Scholar
Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nature Genet.28, 371–375 (2001). ArticleCASPubMed Google Scholar
Mager, J., Montgomery, N. D., de Villena, F. P. & Magnuson, T. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nature Genet.33, 502–507 (2003). Establishes a connection between Polycomb proteins and imprinting. ArticleCASPubMed Google Scholar
Lewis, A. et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nature Genet.36, 1291–1295 (2004). ArticleCASPubMed Google Scholar
Umlauf, D. et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nature Genet.36, 1296–1300 (2004). ArticleCASPubMed Google Scholar
Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev.19, 697–708 (2005). ArticleCASPubMedPubMed Central Google Scholar
Montgomery, N. D. et al. The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr. Biol.15, 942–947 (2005). ArticleCASPubMed Google Scholar
Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex. Mol. Cell15, 57–67 (2004). ArticleCASPubMed Google Scholar
Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J.23, 4061–4071 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kuzmichev, A., Jenuwein, T., Tempst, P. & Reinberg, D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell14, 183–193 (2004). ArticleCASPubMed Google Scholar
Ng, H. H., Robert, F., Young, R. A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell11, 709–719 (2003). ArticleCASPubMed Google Scholar
Krogan, N. J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol.23, 4207–4218 (2003). ArticleCASPubMedPubMed Central Google Scholar
Li, B., Howe, L., Anderson, S., Yates, J. R., 3rd & Workman, J. L. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem.278, 8897–8903 (2003). ArticleCASPubMed Google Scholar
Briggs, S. D. et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature418, 498 (2002). ArticleCASPubMed Google Scholar
Dover, J. et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol Chem.277, 28368–28371 (2002). ArticleCASPubMed Google Scholar
Ng, H. H., Xu, R. M., Zhang, Y. & Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem.277, 34655–34657 (2002). ArticleCASPubMed Google Scholar
Henry, K. W. et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev.17, 2648–2663 (2003). ArticleCASPubMedPubMed Central Google Scholar
Daniel, J. A. et al. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J. Biol. Chem.279, 1867–1871 (2004). ArticleCASPubMed Google Scholar
Kao, C. F. et al. Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev.18, 184–195 (2004). ArticleCASPubMedPubMed Central Google Scholar
Henry, K. W. & Berger, S. L. Trans-tail histone modifications: wedge or bridge? Nature Struct. Biol.9, 565–566 (2002). ArticleCASPubMed Google Scholar
Ezhkova, E. & Tansey, W. P. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol. Cell13, 435–442 (2004). ArticleCASPubMed Google Scholar
Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature419, 407–411 (2002). ArticleCASPubMed Google Scholar
Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA99, 8695–8700 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell122, 517–527 (2005). Demonstrates the generality of previous work investigating the distribution of histone modifications at active and silent genes. ArticleCASPubMed Google Scholar
Briggs, S. D. et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev.15, 3286–3295 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nagy, P. L., Griesenbeck, J., Kornberg, R. D. & Cleary, M. L. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl Acad. Sci. USA99, 90–94 (2002). ArticleCASPubMed Google Scholar
Wang, H. et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol. Cell12, 475–487 (2003). ArticleCASPubMed Google Scholar
Schlichter, A. & Cairns, B. R. Histone trimethylation by Set1 is coordinated by the RRM, autoinhibitory, and catalytic domains. EMBO J.24, 1222–1231 (2005). ArticleCASPubMedPubMed Central Google Scholar
Laribee, R. N. et al. BUR kinase selectively regulates H3-K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr. Biol.15, 1487–1493 (2005). Identifies a regulatory pathway that regulates methylation status. ArticleCASPubMed Google Scholar
Santos-Rosa, H. et al. Methylation of histone H3-K4 mediates association of the Isw1p ATPase with chromatin. Mol. Cell12, 1325–1332 (2003). ArticleCASPubMed Google Scholar
Dou, Y. et al. Physical association and coordinate function of the H3-K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell121, 873–885 (2005). ArticleCASPubMed Google Scholar
Feng, Q. et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol.12, 1052–1058 (2002). ArticleCASPubMed Google Scholar
van Leeuwen, F., Gafken, P. R. & Gottschling, D. E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell109, 745–756. (2002). ArticleCASPubMed Google Scholar
Ng, H. H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev.16, 1518–1527 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lacoste, N., Utley, R. T., Hunter, J. M., Poirier, G. G. & Cote, J. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J. Biol. Chem.277, 30421–30424 (2002). ArticleCASPubMed Google Scholar
Ng, H. H., Ciccone, D. N., Morshead, K. B., Oettinger, M. A. & Struhl, K. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc. Natl Acad. Sci. USA100, 1820–1825 (2003). ArticleCASPubMedPubMed Central Google Scholar
Okada, Y. et al. hDOT1L links histone methylation to leukemogenesis. Cell121, 167–178 (2005). This study provides evidence that MLL–AF10 fusion proteins induce leukaemia through the recruitment of DOT1L and H3-K79 methylation to target genes. ArticleCASPubMed Google Scholar
Bannister, A. J., Schneider, R. & Kouzarides, T. Histone methylation: dynamic or static? Cell109, 801–806 (2002). ArticleCASPubMed Google Scholar
Cuthbert, G. L. et al. Histone deimination antagonizes arginine methylation. Cell118, 545–553 (2004). References 114 and 115 are the first demonstrations of an enzyme capable of reversing histone methylation. ArticleCASPubMed Google Scholar
Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science306, 279–283 (2004). ArticleCASPubMed Google Scholar
Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119, 941–953 (2004). Identifies the first histone lysine demethylase. ArticleCASPubMed Google Scholar
Lee, M. G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature437, 432–435 (2005). ArticleCASPubMed Google Scholar
Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature437, 436–439 (2005). ArticleCASPubMed Google Scholar
Clissold, P. M. & Ponting, C. P. JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2β. Trends Biochem. Sci.26, 7–9 (2001). ArticleCASPubMed Google Scholar
Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419, 624–629 (2002). ArticleCASPubMed Google Scholar
Fang, J. et al. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol.12, 1086–1099 (2002). ArticleCASPubMed Google Scholar
Nishioka, K. et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol. Cell9, 1201–1213 (2002). ArticleCASPubMed Google Scholar
Karachentsev, D., Sarma, K., Reinberg, D. & Steward, R. PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev.19, 431–435 (2005). ArticleCASPubMedPubMed Central Google Scholar
Julien, E. & Herr, W. A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF-1. Mol. Cell14, 713–725 (2004). ArticleCASPubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001). ArticleCASPubMed Google Scholar
Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416, 556–560 (2002). ArticleCASPubMed Google Scholar
Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol.13, 1192–1200 (2003). ArticleCASPubMed Google Scholar
Freitag, M., Hickey, P. C., Khlafallah, T. K., Read, N. D. & Selker, E. U. HP1 is essential for DNA methylation in neurospora. Mol. Cell13, 427–434 (2004). ArticleCASPubMed Google Scholar
Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell3, 89–95 (2003). ArticleCASPubMed Google Scholar
Sarraf, S. A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol.Cell15, 595–605 (2004). Demonstrates that DNA methylation can direct histone methylation during DNA replication. ArticleCASPubMed Google Scholar