Exploring mechanisms of FGF signalling through the lens of structural biology (original) (raw)
Itoh, N. & Ornitz, D. M. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem.149, 121–130 (2011). ArticleCASPubMed Google Scholar
Mohammadi, M., Olsen, S. K. & Ibrahimi, O. A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev.16, 107–137 (2005). ArticleCASPubMed Google Scholar
Itoh, N. & Ornitz, D. M. Evolution of the Fgf and Fgfr gene families. Trends Genet.20, 563–569 (2004). ArticleCASPubMed Google Scholar
Schlessinger, J. et al. Crystal structure of a ternary FGF–FGFR–heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell6, 743–750 (2000). Reveals the structural basis by which heparan sulphate promotes ligand-induced FGFR dimerization. ArticleCASPubMed Google Scholar
Chen, H. et al. A crystallographic snapshot of tyrosine _trans_-phosphorylation in action. Proc. Natl Acad. Sci. USA105, 19660–19665 (2008). ArticlePubMedPubMed Central Google Scholar
Furdui, C. M., Lew, E. D., Schlessinger, J. & Anderson, K. S. Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol. Cell21, 711–717 (2006). ArticleCASPubMed Google Scholar
Gotoh, N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci.99, 1319–1325 (2008). ArticleCASPubMed Google Scholar
Carpenter, G. & Ji, Q. Phospholipase C-γ as a signal-transducing element. Exp. Cell Res.253, 15–24 (1999). ArticleCASPubMed Google Scholar
Bottcher, R. T. & Niehrs, C. Fibroblast growth factor signaling during early vertebrate development. Endocr. Rev.26, 63–77 (2005). ArticleCASPubMed Google Scholar
Thisse, B. & Thisse, C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol.287, 390–402 (2005). ArticleCASPubMed Google Scholar
Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nature Rev. Cancer10, 116–129 (2010). ArticleCAS Google Scholar
Asada, M. et al. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim. Biophys. Acta1790, 40–48 (2009). ArticleCASPubMed Google Scholar
Perrimon, N. & Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature404, 725–728 (2000). ArticleCASPubMed Google Scholar
Goetz, R. et al. Molecular insights into the Klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol. Cell. Biol.27, 3417–3428 (2007). Reveals the structural basis for the endocrine mode of action of FGF19 subfamily ligands. ArticleCASPubMedPubMed Central Google Scholar
Rapraeger, A. C., Krufka, A. & Olwin, B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science252, 1705–1708 (1991). ArticleCASPubMed Google Scholar
Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P. & Ornitz, D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell64, 841–848 (1991). ArticleCASPubMed Google Scholar
Kurosu, H. et al. Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem.282, 26687–26695 (2007). ArticleCASPubMed Google Scholar
Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by Klotho. J. Biol. Chem.281, 6120–6123 (2006). ArticleCASPubMed Google Scholar
Nakatani, T., Ohnishi, M. & Razzaque, M. S. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model. FASEB J.23, 3702–3711 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ogawa, Y. et al. βKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl Acad. Sci. USA104, 7432–7437 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tomiyama, K. et al. Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc. Natl Acad. Sci. USA107, 1666–1671 (2010). CASPubMedPubMed Central Google Scholar
Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature444, 770–774 (2006). ArticleCASPubMed Google Scholar
Dorey, K. & Amaya, E. FGF signalling: diverse roles during early vertebrate embryogenesis. Development137, 3731–3742 (2010). ArticleCASPubMed Google Scholar
Hart, A. W., Baeza, N., Apelqvist, A. & Edlund, H. Attenuation of FGF signalling in mouse β-cells leads to diabetes. Nature408, 864–868 (2000). Identifies a crucial role for FGF signalling in pancreatic β-cell function and glucose homeostasis in the adult. ArticleCASPubMed Google Scholar
Jonker, J. W. et al. A PPARγ–FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature485, 391–394 (2012). Identifies a crucial role for FGF1 in the remodelling of adipose tissue in response to fluctuating nutrient availability. ArticleCASPubMedPubMed Central Google Scholar
Zhou, M. et al. Fibroblast growth factor 2 control of vascular tone. Nature Med.4, 201–207 (1998). ArticleCASPubMed Google Scholar
Potthoff, M. J., Kliewer, S. A. & Mangelsdorf, D. J. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev.26, 312–324 (2012). ArticleCASPubMedPubMed Central Google Scholar
Quarles, L. D. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nature Rev. Endocrinol.8, 276–286 (2012). ArticleCAS Google Scholar
Razzaque, M. S. The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nature Rev. Endocrinol.5, 611–619 (2009). ArticleCAS Google Scholar
Long, Y. C. & Kharitonenkov, A. Hormone-like fibroblast growth factors and metabolic regulation. Biochim. Biophys. Acta1812, 791–795 (2011). ArticleCASPubMed Google Scholar
Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nature Rev. Drug Discov.8, 235–253 (2009). ArticleCAS Google Scholar
Wilkie, A. O. Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. CytokineGrowth Factor Rev.16, 187–203 (2005). ArticleCAS Google Scholar
Goetz, R. et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23–FGFR–Klotho complex formation. Proc. Natl Acad. Sci. USA107, 407–412 (2010). ArticlePubMed Google Scholar
Kalinina, J. et al. Homodimerization controls the fibroblast growth factor 9 subfamily's receptor binding and heparan sulfate-dependent diffusion in the extracellular matrix. Mol. Cell. Biol.29, 4663–4678 (2009). ArticleCASPubMedPubMed Central Google Scholar
Olsen, S. K. et al. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev.20, 185–198 (2006). Identifies the molecular mechanism by which N-terminal splicing regulates the biological activity of FGF8 and provides structural evidence for ligand-induced differences in FGFR dimerization. ArticleCASPubMedPubMed Central Google Scholar
Plotnikov, A. N. et al. Crystal structure of fibroblast growth factor 9 reveals regions implicated in dimerization and autoinhibition. J. Biol. Chem.276, 4322–4329 (2001). ArticleCASPubMed Google Scholar
Yeh, B. K. et al. Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors. Proc. Natl Acad. Sci. USA100, 2266–2271 (2003). Reveals the molecular basis by which alternative splicing in the D3 domain of FGFR2 regulates the ligand-binding specificity of this receptor. ArticleCASPubMedPubMed Central Google Scholar
Chen, Y., Mohammadi, M. & Flanagan, J. G. Graded levels of FGF protein span the midbrain and can instruct graded induction and repression of neural mapping labels. Neuron62, 773–780 (2009). ArticleCASPubMedPubMed Central Google Scholar
Harada, M. et al. FGF9 monomer–dimer equilibrium regulates extracellular matrix affinity and tissue diffusion. Nature Genet.41, 289–298 (2009). ArticleCASPubMed Google Scholar
Makarenkova, H. P. et al. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci. Signal.2, ra55 (2009). ArticleCASPubMedPubMed Central Google Scholar
Qu, X. et al. Lacrimal gland development and Fgf10–Fgfr2b signaling are controlled by 2-_O_- and 6-_O_-sulfated heparan sulfate. J. Biol. Chem.286, 14435–14444 (2011). Demonstrates that a specific fine structure of the heparan sulphate produced by the cell responding to an FGF ligand is required for FGF signalling. ArticleCASPubMedPubMed Central Google Scholar
Qu, X. et al. Glycosaminoglycan-dependent restriction of FGF diffusion is necessary for lacrimal gland development. Development139, 2730–2739 (2012). Demonstrates that the heparan sulphate produced by the cell secreting an FGF ligand mediates the formation of an FGF gradient in the extracellular matrix and that its fine structure is a crucial determinant in this process. ArticleCASPubMedPubMed Central Google Scholar
Murakami, H. et al. Elbow knee synostosis (Eks): a new mutation on mouse chromosome 14. Mamm. Genome13, 341–344 (2002). ArticlePubMed Google Scholar
Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development121, 439–451 (1995). CASPubMed Google Scholar
Gemel, J., Gorry, M., Ehrlich, G. D. & MacArthur, C. A. Structure and sequence of human FGF8. Genomics35, 253–257 (1996). ArticleCASPubMed Google Scholar
MacArthur, C. A. et al. FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development121, 3603–3613 (1995). CASPubMed Google Scholar
Xu, J., Lawshe, A., MacArthur, C. A. & Ornitz, D. M. Genomic structure, mapping, activity and expression of fibroblast growth factor 17. Mech. Dev.83, 165–178 (1999). ArticleCASPubMed Google Scholar
Sato, T., Araki, I. & Nakamura, H. Inductive signal and tissue responsiveness defining the tectum and the cerebellum. Development128, 2461–2469 (2001). CASPubMed Google Scholar
Lee, S. M., Danielian, P. S., Fritzsch, B. & McMahon, A. P. Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development124, 959–969 (1997). CASPubMed Google Scholar
Liu, A., Losos, K. & Joyner, A. L. FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development126, 4827–4838 (1999). CASPubMed Google Scholar
Christen, B. & Slack, J. M. FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev. Biol.192, 455–466 (1997). ArticleCASPubMed Google Scholar
Fletcher, R. B., Baker, J. C. & Harland, R. M. FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development133, 1703–1714 (2006). ArticleCASPubMed Google Scholar
Falardeau, J. et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J. Clin. Invest.118, 2822–2831 (2008). Implicates decreased FGF8 signalling in the deficiency of gonadotropin-releasing hormone that underlies idiopathic hypogonadotropic hypogonadism and presents an example for the role of N-terminal alternative splicing in regulating the biological activity of FGF8. ArticleCASPubMedPubMed Central Google Scholar
Shimada, T. et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology143, 3179–3182 (2002). ArticleCASPubMed Google Scholar
White, K. E. et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int.60, 2079–2086 (2001). ArticleCASPubMed Google Scholar
Seidah, N. G. & Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nature Rev. Drug Discov.11, 367–383 (2012). ArticleCAS Google Scholar
Gram Schjoldager, K. T. et al. A systematic study of site-specific GalNAc-type _O_-glycosylation modulating proprotein convertase processing. J. Biol. Chem.286, 40122–40132 (2011). ArticleCASPubMed Central Google Scholar
White, K. E. et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nature Genet.26, 345–348 (2000). Identifies FGF23 as a phosphaturic hormone and missense mutations at the proteolytic cleavage site of FGF23 as the cause for the renal phosphate wasting disease autosomal dominant hypophosphatemic rickets. ArticleCAS Google Scholar
Frishberg, Y. et al. Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of _O_-glycosylation associated with augmented processing of fibroblast growth factor 23. J. Bone Miner. Res.22, 235–242 (2007). ArticleCASPubMed Google Scholar
Kato, K. et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires _O_-glycosylation. J. Biol. Chem.281, 18370–18377 (2006). ArticleCASPubMed Google Scholar
Hsu, Y. R. et al. Human keratinocyte growth factor recombinantly expressed in Chinese hamster ovary cells: isolation of isoforms and characterization of post-translational modifications. Protein Expr. Purif.12, 189–200 (1998). ArticleCASPubMed Google Scholar
Kim, G. Y. et al. HtrA1 is a novel antagonist controlling FGF signaling via cleavage of FGF8. Mol. Cell. Biol. 4 Sept 2012 (doi:10.1128/MCB.00872-12).
Avivi, A., Yayon, A. & Givol, D. A novel form of FGF receptor-3 using an alternative exon in the immunoglobulin domain III. FEBS Lett.330, 249–252 (1993). ArticleCASPubMed Google Scholar
Chellaiah, A. T., McEwen, D. G., Werner, S., Xu, J. & Ornitz, D. M. Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. Biol. Chem.269, 11620–11627 (1994). CASPubMed Google Scholar
Johnson, D. E., Lu, J., Chen, H., Werner, S. & Williams, L. T. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol. Cell. Biol.11, 4627–4634 (1991). ArticleCASPubMedPubMed Central Google Scholar
Miki, T. et al. Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc. Natl Acad. Sci. USA89, 246–250 (1992). ArticleCASPubMedPubMed Central Google Scholar
Orr-Urtreger, A. et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev. Biol.158, 475–486 (1993). ArticleCASPubMed Google Scholar
Yan, G., Fukabori, Y., McBride, G., Nikolaropolous, S. & McKeehan, W. L. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)–FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol. Cell. Biol.13, 4513–4522 (1993). ArticleCASPubMedPubMed Central Google Scholar
Yayon, A. et al. A confined variable region confers ligand specificity on fibroblast growth factor receptors: implications for the origin of the immunoglobulin fold. EMBO J.11, 1885–1890 (1992). ArticleCASPubMedPubMed Central Google Scholar
Wuechner, C., Nordqvist, A. C., Winterpacht, A., Zabel, B. & Schalling, M. Developmental expression of splicing variants of fibroblast growth factor receptor 3 (FGFR3) in mouse. Int. J. Dev. Biol.40, 1185–1188 (1996). CASPubMed Google Scholar
Zhang, X. et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem.281, 15694–15700 (2006). ArticleCASPubMed Google Scholar
Alarid, E. T. et al. Keratinocyte growth factor functions in epithelial induction during seminal vesicle development. Proc. Natl Acad. Sci. USA91, 1074–1078 (1994). ArticleCASPubMedPubMed Central Google Scholar
Colvin, J. S., White, A. C., Pratt, S. J. & Ornitz, D. M. Lung hypoplasia and neonatal death in _Fgf9_-null mice identify this gene as an essential regulator of lung mesenchyme. Development128, 2095–2106 (2001). CASPubMed Google Scholar
De Moerlooze, L. et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal–epithelial signalling during mouse organogenesis. Development127, 483–492 (2000). CASPubMed Google Scholar
Min, H. et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev.12, 3156–3161 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sekine, K. et al. Fgf10 is essential for limb and lung formation. Nature Genet.21, 138–141 (1999). ArticleCASPubMed Google Scholar
Xu, X. et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development125, 753–765 (1998). Provides genetic evidence for the crucial role of FGFR2 in bidirectional paracrine FGF signalling between the epithelium and the mesenchyme that initiates the outgrowth of limb buds. CASPubMed Google Scholar
Zhang, X. et al. Reciprocal epithelial–mesenchymal FGF signaling is required for cecal development. Development133, 173–180 (2006). ArticleCASPubMed Google Scholar
Plotnikov, A. N., Hubbard, S. R., Schlessinger, J. & Mohammadi, M. Crystal structures of two FGF–FGFR complexes reveal the determinants of ligand-receptor specificity. Cell101, 413–424 (2000). ArticleCASPubMed Google Scholar
Wang, F., Kan, M., Xu, J., Yan, G. & McKeehan, W. L. Ligand-specific structural domains in the fibroblast growth factor receptor. J. Biol. Chem.270, 10222–10230 (1995). ArticleCASPubMed Google Scholar
Nagase, T., Nagase, M., Hirose, S. & Ohmori, K. Mutations in fibroblast growth factor receptor 2 gene and craniosynostotic syndromes in Japanese children. J. Craniofac. Surg.9, 162–170 (1998). ArticleCASPubMed Google Scholar
Ibrahimi, O. A. et al. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum. Mol. Genet.13, 2313–2324 (2004). ArticleCASPubMed Google Scholar
Olsen, S. K. et al. Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proc. Natl Acad. Sci. USA101, 935–940 (2004). ArticleCASPubMedPubMed Central Google Scholar
Plotnikov, A. N., Schlessinger, J., Hubbard, S. R. & Mohammadi, M. Structural basis for FGF receptor dimerization and activation. Cell98, 641–650 (1999). ArticleCASPubMed Google Scholar
Stauber, D. J., DiGabriele, A. D. & Hendrickson, W. A. Structural interactions of fibroblast growth factor receptor with its ligands. Proc. Natl Acad. Sci. USA97, 49–54 (2000). ArticleCASPubMedPubMed Central Google Scholar
Goetz, R. et al. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J. Biol. Chem.287, 29134–29146 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ito, S., Fujimori, T., Hayashizaki, Y. & Nabeshima, Y. Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. Biochim. Biophys. Acta1576, 341–345 (2002). ArticleCASPubMed Google Scholar
Ito, S. et al. Molecular cloning and expression analyses of mouse βKlotho, which encodes a novel Klotho family protein. Mech. Dev.98, 115–119 (2000). ArticleCASPubMed Google Scholar
Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature390, 45–51 (1997). ArticleCASPubMed Google Scholar
Yahata, K. et al. Molecular cloning and expression of a novel Klotho-related protein. J. Mol. Med. (Berl.)78, 389–394 (2000). ArticleCAS Google Scholar
Henrissat, B. & Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J.293, 781–788 (1993). ArticleCASPubMedPubMed Central Google Scholar
Henrissat, B. & Bairoch, A. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J.316, 695–696 (1996). ArticlePubMedPubMed Central Google Scholar
Fon Tacer, K. et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol.24, 2050–2064 (2010). ArticleCASPubMedPubMed Central Google Scholar
Goetz, R. et al. Klotho coreceptors inhibit signaling by paracrine fibroblast growth factor 8 subfamily ligands. Mol. Cell. Biol.32, 1944–1954 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kharitonenkov, A. et al. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J. Cell. Physiol.215, 1–7 (2008). ArticleCASPubMed Google Scholar
Li, S. A. et al. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct. Funct.29, 91–99 (2004). ArticleCASPubMed Google Scholar
Machado, M. F. et al. Regulation and action of fibroblast growth factor 17 in bovine follicles. J. Endocrinol.202, 347–353 (2009). ArticleCASPubMed Google Scholar
Portela, V. M. et al. Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle. Biol. Reprod.83, 339–346 (2010). ArticleCASPubMed Google Scholar
Gabrielsson, B. G. et al. Depot-specific expression of fibroblast growth factors in human adipose tissue. Obes. Res.10, 608–616 (2002). ArticleCASPubMed Google Scholar
Jaskoll, T. et al. FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Dev. Biol.5, 11 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mailleux, A. A. et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development129, 53–60 (2002). CASPubMed Google Scholar
Qiao, J. et al. FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development126, 547–554 (1999). CASPubMed Google Scholar
Dutchak, P. A. et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell148, 556–567 (2012). Identifies FGF21 as a mediator of the metabolic actions of PPARγ and hence provides new insight into the mechanism of action of the thiazolidinedione class of antidiabetic drugs, which are PPARγ agonists. ArticleCASPubMedPubMed Central Google Scholar
Tontonoz, P. & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem.77, 289–312 (2008). ArticleCASPubMed Google Scholar
Hotta, Y. et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology150, 4625–4633 (2009). ArticleCASPubMed Google Scholar
Ming, A. Y. et al. Dynamics and distribution of Klothoβ (KLB) and fibroblast growth factor receptor-1 (FGFR1) in living cells reveal the fibroblast growth factor-21 (FGF21)-induced receptor complex. J. Biol. Chem.287, 19997–20006 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kouhara, H. et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell89, 693–702 (1997). ArticleCASPubMed Google Scholar
Lamothe, B. et al. The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway. Mol. Cell. Biol.24, 5657–5666 (2004). ArticleCASPubMedPubMed Central Google Scholar
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell96, 857–868 (1999). ArticleCASPubMed Google Scholar
Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell91, 231–241 (1997). ArticleCASPubMed Google Scholar
Hartwig, J. H. et al. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature356, 618–622 (1992). ArticleCASPubMed Google Scholar
Li, H., Rao, A. & Hogan, P. G. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol.21, 91–103 (2011). ArticleCASPubMed Google Scholar
Ye, S. et al. Structural basis for interaction of FGF-1, FGF-2, and FGF-7 with different heparan sulfate motifs. Biochemistry40, 14429–14439 (2001). ArticleCASPubMed Google Scholar