Diversity in the origins of proteostasis networks — a driver for protein function in evolution (original) (raw)
Anfinsen, C. B. Principles that govern the folding of protein chains. Science181, 223–230 (1973). ArticleCASPubMed Google Scholar
Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science319, 916–919 (2008). Introduces the concept of proteostasis and its role in managing human health, disease and ageing. ArticleCASPubMed Google Scholar
Gidalevitz, T., Prahlad, V. & Morimoto, R. I. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb. Perspect. Biol.3, a009704 (2011). Summarizes our current understanding of stress responses to the protein folding problem managed by diverse organisms. ArticleCASPubMedPubMed Central Google Scholar
Darwin, C. The Origin of Species. (1867).
Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol.19, 596–604 (2009). Analyses the impact of mutation on the thermodynamic properties of the fold and its contribution to the evolution of protein function. ArticleCASPubMed Google Scholar
Lindquist, S. Protein folding sculpting evolutionary change. Cold Spring Harb. Symp. Quant. Biol.74, 103–108 (2009). Highlights the key role of HSP90 in facilitating a robust response to environmental changes and organismal evolvability. ArticleCASPubMed Google Scholar
Broadley, S. A. & Hartl, F. U. The role of molecular chaperones in human misfolding diseases. FEBS Lett.583, 2647–2653 (2009). ArticleCASPubMed Google Scholar
Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W. & Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem.78, 959–991 (2009). ArticleCASPubMed Google Scholar
Voisine, C., Pedersen, J. S. & Morimoto, R. I. Chaperone networks: tipping the balance in protein folding diseases. Neurobiol. Dis.40, 12–20 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lindquist, S. L. & Kelly, J. W. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb. Perspect. Biol.3, a004507 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hutt, D. M. & Balch, W. E. Expanding proteostasis by membrane trafficking networks. Cold Spring Harb. Perspect. Biol. 19 Feb 2013 (doi:10.1101/cshperspect.a013383). Describes membrane trafficking compartments as crucial components of the proteostasis machinery that delineate the transition from bacterial and/or archaeal cellular architecture to eukaryotic cellular architecture and that considerably expanded the versatility of protein folding pathways to generate new function.
Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature475, 324–332 (2011). Reviews the role of chaperones in managing protein folding. ArticleCASPubMed Google Scholar
Taipale, M., Jarosz, D. F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Rev. Mol. Cell Biol.11, 515–528 (2010). ArticleCAS Google Scholar
Chen, B., Retzlaff, M., Roos, T. & Frydman, J. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol.3, a004374 (2011). Presents the multiple roles proteostasis in managing protein aggregation. ArticleCASPubMedPubMed Central Google Scholar
Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature454, 1088–1095 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tyedmers, J., Mogk, A. & Bukau, B. Cellular strategies for controlling protein aggregation. Nature Rev. Mol. Cell Biol.11, 777–788 (2010). ArticleCAS Google Scholar
Yang, Z. & Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol.22, 124–131 (2010). ArticleCASPubMed Google Scholar
Rubinsztein, D. C., Shpilka, T. & Elazar, Z. Mechanisms of autophagosome biogenesis. Curr. Biol.22, R29–R34 (2012). ArticleCASPubMed Google Scholar
Muller, S., Dennemarker, J. & Reinheckel, T. Specific functions of lysosomal proteases in endocytic and autophagic pathways. Biochim. Biophys. Acta1824, 34–43 (2012). ArticleCASPubMed Google Scholar
Lee, J., Giordano, S. & Zhang, J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J.441, 523–540 (2012). ArticleCASPubMed Google Scholar
Lamark, T. & Johansen, T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol.2012, 736905 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kaushik, S. & Cuervo, A. M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol.22, 407–417 (2012). ArticleCASPubMedPubMed Central Google Scholar
Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem.81, 291–322 (2012). ArticleCASPubMed Google Scholar
Kikis, E. A., Gidalevitz, T. & Morimoto, R. I. Protein homeostasis in models of aging and age-related conformational disease. Adv. Exp. Med. Biol.694, 138–159 (2010). ArticleCASPubMedPubMed Central Google Scholar
Fox, G. E. et al. The phylogeny of prokaryotes. Science209, 457–463 (1980). Describes the use of 16S rRNA sequencing approaches to define for the first time the three domains of life —Bacteria, Archaea and Eukarya. ArticleCASPubMed Google Scholar
Balch, W. E., Magrum, L. J., Fox, G. E., Wolfe, R. S. & Woese, C. R. An ancient divergence among the bacteria. J. Mol. Evol.9, 305–311 (1977). ArticleCASPubMed Google Scholar
Darwin, C. The Voyage of the Beagle. (1856).
Roberts, E., Sethi, A., Montoya, J., Woese, C. R. & Luthey-Schulten, Z. Molecular signatures of ribosomal evolution. Proc. Natl Acad. Sci. USA105, 13953–13958 (2008). ArticlePubMedPubMed Central Google Scholar
Vetsigian, K., Woese, C. & Goldenfeld, N. Collective evolution and the genetic code. Proc. Natl Acad. Sci. USA103, 10696–10701 (2006). ArticleCASPubMedPubMed Central Google Scholar
Horwich, A. L., Fenton, W. A., Chapman, E. & Farr, G. W. Two families of chaperonin: physiology and mechanism. Annu. Rev. Cell Dev. Biol.23, 115–145 (2007). ArticleCASPubMed Google Scholar
Margittai, E. & Sitia, R. Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells. Traffic12, 1–8 (2011). ArticleCASPubMed Google Scholar
Hutt, D. M., Powers, E. T. & Balch, W. E. The proteostasis boundary in misfolding diseases of membrane traffic. FEBS Lett.583, 2639–2646 (2009). ArticleCASPubMedPubMed Central Google Scholar
Powers, E. T. & Balch, W. E. Protein folding: protection from the outside. Nature471, 42–43 (2011). ArticleCASPubMed Google Scholar
Morimoto, R. I. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb. Symp. Quant. Biol.76, 91–99 (2011). ArticleCASPubMed Google Scholar
Ong, D. S. & Kelly, J. W. Chemical and/or biological therapeutic strategies to ameliorate protein misfolding diseases. Curr. Opin. Cell Biol.23, 231–238 (2011). ArticleCASPubMed Google Scholar
Bolen, D. W. & Rose, G. D. Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu. Rev. Biochem.77, 339–362 (2008). ArticleCASPubMed Google Scholar
Bartlett, G. J. Choudhary, A., Raines, R. T. & Woolfson, D. N. n → π* interactions in proteins. Nature Chem. Biol.6, 615–620 (2010). ArticleCAS Google Scholar
Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature426, 895–899 (2003). ArticleCASPubMed Google Scholar
Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem.75, 333–366 (2006). ArticleCASPubMed Google Scholar
Kelly, J. W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol.8, 101–106 (1998). ArticleCASPubMed Google Scholar
Kultz, D. Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J. Exp. Biol.206, 3119–3124 (2003). ArticleCASPubMed Google Scholar
Akerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nature Rev. Mol. Cell Biol.11, 545–555 (2010). An important overview of the mechanism of HSF function in regulating the expression of proteostasis components in response to acute and chronic stress. ArticleCAS Google Scholar
Pellegrino, M. W., Nargund, A. M. & Haynes, C. M. Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta1833, 410–416 (2012). Provides a complete update on the pathways and the importance of the mitoUPR in managing responses to folding stress. ArticleCASPubMedPubMed Central Google Scholar
Nordhues, A., Miller, S. M., Muhlhaus, T. & Schroda, M. New insights into the roles of molecular chaperones in Chlamydomonas and Volvox. Int. Rev. Cell. Mol. Biol.285, 75–113 (2010). ArticleCASPubMed Google Scholar
Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol.67, 225–257 (2005). ArticleCASPubMed Google Scholar
Chen, B., Zhong, D. & Monteiro, A. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics7, 156 (2006). ArticleCASPubMedPubMed Central Google Scholar
Haynes, C. M. & Ron, D. The mitochondrial UPR — protecting organelle protein homeostasis. J. Cell Sci.123, 3849–3855 (2010). ArticleCASPubMed Google Scholar
Rudiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J.16, 1501–1507 (1997). ArticleCASPubMedPubMed Central Google Scholar
Blond-Elguindi, S. et al. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell75, 717–128 (1993). ArticleCASPubMed Google Scholar
Wang, Z., Feng, H., Landry, S. J., Maxwell, J. & Gierasch, L. M. Basis of substrate binding by the chaperonin GroEL. Biochemistry38, 12537–12546 (1999). ArticleCASPubMed Google Scholar
Scheibel, T., Weikl, T. & Buchner, J. Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence. Proc. Natl Acad. Sci. USA95, 1495–1499 (1998). ArticleCASPubMedPubMed Central Google Scholar
Genevaux, P., Georgopoulos, C. & Kelley, W. L. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol.66, 840–857 (2007). ArticleCASPubMed Google Scholar
Brocchieri, L. Conway de Macario, E. & Macario, A. J. hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol. Biol.8, 19 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chen, B., Piel, W. H., Gui, L., Bruford, E. & Monteiro, A. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics86, 627–637 (2005). ArticleCASPubMed Google Scholar
Sreedhar, A. S., Kalmar, E., Csermely, P. & Shen, Y. F. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett.562, 11–15 (2004). ArticleCASPubMed Google Scholar
Sakisaka, T., Meerlo, T., Matteson, J., Plutner, H. & Balch, W. E. Rab–αGDI activity is regulated by a Hsp90 chaperone complex. EMBO J.21, 6125–6135 (2002). Emphasizes the active role of proteostasis in managing ongoing changes in synaptic function in the brain. ArticleCASPubMedPubMed Central Google Scholar
Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science334, 1081–1086 (2011). A comprehensive description of the interface between the UPR and cell physiology. CASPubMed Google Scholar
Ostrovsky, O., Eletto, D., Makarewich, C., Barton, E. R. & Argon, Y. Glucose regulated protein 94 is required for muscle differentiation through its control of the autocrine production of insulin-like growth factors. Biochim. Biophys. Acta1803, 333–341 (2010). ArticleCASPubMed Google Scholar
Weiss, C., Bonshtien, A., Farchi-Pisanty, O., Vitlin, A. & Azem, A. Cpn20: siamese twins of the chaperonin world. Plant Mol. Biol.69, 227–238 (2009). ArticleCASPubMed Google Scholar
Peltier, J. B. et al. The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol. Cell Proteom.5, 114–133 (2006). ArticleCAS Google Scholar
Peng, L. et al. A chaperonin subunit with unique structures is essential for folding of a specific substrate. PLoS Biol.9, e1001040 (2011). ArticleCASPubMedPubMed Central Google Scholar
Brewer, J. W. & Hendershot, L. M. Building an antibody factory: a job for the unfolded protein response. Nature Immunol.6, 23–29 (2005). ArticleCAS Google Scholar
Back, S. H., Kang, S. W., Han, J. & Chung, H. T. Endoplasmic reticulum stress in the β-cell pathogenesis of type 2 diabetes. Exp. Diabetes Res.2012, 618396 (2012). ArticleCASPubMed Google Scholar
Prahlad, V., Cornelius, T. & Morimoto, R. I. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science320, 811–814 (2008). The first description of cell non-autonomous control by neuronal signaling to coordinate whole animal responses to heat stress. ArticleCASPubMedPubMed Central Google Scholar
Bouchecareilh, M. & Balch, W. E. Proteostasis, an emerging therapeutic paradigm for managing inflammatory airway stress disease. Curr. Mol. Med.12, 815–826 (2012). ArticleCASPubMed Google Scholar
Demasi, M. & Laurindo, F. R. Physiological and pathological pole of the ubiquitin–proteasome system in the vascular smooth muscle cell. Cardiovasc. Res.95, 183–193 (2012). ArticleCASPubMed Google Scholar
Altun, M. et al. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J. Biol. Chem.285, 39597–39608 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lund, P. A. Multiple chaperonins in bacteria — why so many? FEMS Microbiol. Rev.33, 785–800 (2009). ArticleCASPubMed Google Scholar
Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T. & Taguchi, H. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J.29, 1552–1564 (2010). A systematic and informative study of the protein folding clients of GroEL. ArticleCASPubMedPubMed Central Google Scholar
Macario, A. J., Brocchieri, L., Shenoy, A. R. & Conway de Macario, E. Evolution of a protein-folding machine: genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene. J. Mol. Evol.63, 74–86 (2006). ArticleCASPubMed Google Scholar
Vorderwulbecke, S. et al. Low temperature or GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor and DnaK. FEBS Lett.559, 181–187 (2004). ArticleCASPubMed Google Scholar
Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol. Cell40, 253–266 (2010). ArticleCASPubMed Google Scholar
Pysz, M. A. et al. Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima. Extremophiles8, 209–217 (2004). ArticleCASPubMed Google Scholar
Boonyaratanakornkit, B. B., Miao, L. Y. & Clark, D. S. Transcriptional responses of the deep-sea hyperthermophile Methanocaldococcus jannaschii under shifting extremes of temperature and pressure. Extremophiles11, 495–503 (2007). ArticleCASPubMed Google Scholar
Bosch, T. C., Krylow, S. M., Bode, H. R. & Steele, R. E. Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuata but absent in Hydra oligactis. Proc. Natl Acad. Sci. USA85, 7927–7931 (1988). To our knowledge the first description of an organism that lacks a HSR. ArticleCASPubMedPubMed Central Google Scholar
Clark, M. S. & Peck, L. S. HSP70 heat shock proteins and environmental stress in antarctic marine organisms: a mini-review. Mar. Genom.2, 11–18 (2009). Article Google Scholar
Bussieres, N. & Granger, R. J. Estimation of water temperature of large lakes in cold climate regions during the period of strong coupling between water and air temperature fluctuations. J. Atmospher. Ocean. Technol.24, 285–296 (2007). Article Google Scholar
McCarty, J. S. & Walker, G. C. DnaK as a thermometer: threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc. Natl Acad. Sci. USA88, 9513–9517 (1991). ArticleCASPubMedPubMed Central Google Scholar
Klostermeier, D., Seidel, R. & Reinstein, J. Functional properties of the molecular chaperone DnaK from Thermus thermophilus. J. Mol. Biol.279, 841–853 (1998). ArticleCASPubMed Google Scholar
Place, S. P. & Hofmann, G. E. Comparison of Hsc70 orthologs from polar and temperate notothenioid fishes: differences in prevention of aggregation and refolding of denatured proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol.288, R1195–R1202 (2005). ArticleCASPubMed Google Scholar
Tomanek, L. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs. J. Exp. Biol.213, 971–979 (2010). A sobering look at the intersection between proteostasis and ecology in the face of climate change. ArticleCASPubMed Google Scholar
Gidalevitz, T., Krupinski, T., Garcia, S. & Morimoto, R. I. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet.5, e1000399 (2009). ArticleCASPubMedPubMed Central Google Scholar
Brennecke, T., Gellner, K. & Bosch, T. C. The lack of a stress response in Hydra oligactis is due to reduced hsp70 mRNA stability. Eur. J. Biochem.255, 703–709 (1998). ArticleCASPubMed Google Scholar
Tian, S., Haney, R. A. & Feder, M. E. Phylogeny disambiguates the evolution of heat-shock _cis_-regulatory elements in Drosophila. PLoS ONE5, e10669 (2010). ArticleCASPubMedPubMed Central Google Scholar
Garbuz, D. G. et al. Functional organization of hsp70 cluster in camel (Camelus dromedarius) and other mammals. PLoS ONE6, e27205 (2011). ArticleCASPubMedPubMed Central Google Scholar
Garbuz, D. G. et al. Organization and evolution of hsp70 clusters strikingly differ in two species of Stratiomyidae (Diptera) inhabiting thermally contrasting environments. BMC Evol. Biol.11, 74 (2011). ArticleCASPubMedPubMed Central Google Scholar
Keller, I. & Seehausen, O. Thermal adaptation and ecological speciation. Mol. Ecol.21, 782–799 (2012). ArticleCASPubMed Google Scholar
Rashkovetsky, E. et al. Adaptive differentiation of thermotolerance in Drosophila along a microclimatic gradient. Hered. (Edinb.)96, 353–359 (2006). ArticleCAS Google Scholar
Michalak, P. et al. Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in “Evolution Canyon”, Israel. Proc. Natl Acad. Sci. USA98, 13195–13200 (2001). Reports the divergence of proteostasis networks driven by microclimatic contrasts between two populations ofD. melanogasterthat are not far apart. ArticleCASPubMedPubMed Central Google Scholar
Carmel, J., Rashkovetsky, E., Nevo, E. & Korol, A. Differential expression of small heat shock protein genes Hsp23 and Hsp40, and heat shock gene _Hsr_-ω in fruit flies (Drosophila melanogaster) along a microclimatic gradient. J. Hered.102, 593–603 (2011). ArticleCASPubMed Google Scholar
Walser, J. C., Chen, B. & Feder, M. E. Heat-shock promoters: targets for evolution by P transposable elements in Drosophila. PLoS Genet.2, e165 (2006). ArticleCASPubMedPubMed Central Google Scholar
Jarosz, D. F. & Lindquist, S. Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science330, 1820–1824 (2010). Emphasizes the evolutionary conservation of the role of HSP90 in responding to stress as a robust adaptive trait to promote evolability. ArticleCASPubMedPubMed Central Google Scholar
Jarosz, D. F., Taipale, M. & Lindquist, S. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu. Rev. Genet.44, 189–216 (2010). ArticleCASPubMed Google Scholar
Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell130, 1005–1018 (2007). ArticleCASPubMedPubMed Central Google Scholar
Trepel, J., Mollapour, M., Giaccone, G. & Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nature Rev. Cancer10, 537–549 (2010). ArticleCAS Google Scholar
Santagata, S. et al. Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem. Biol.7, 340–349 (2012). ArticleCASPubMed Google Scholar
Mendillo, M. L. et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell150, 549–562 (2012). An in depth analysis of the crucial role of HSF1 in managing the differential HSRs to different environmental stimuli, indicating the adaptive value of HSF1 in rapid evolution of protective mechanisms for survival such as occurs in cancer. ArticleCASPubMedPubMed Central Google Scholar
Geller, R., Taguwa, S. & Frydman, J. Broad action of Hsp90 as a host chaperone required for viral replication. Biochim. Biophys. Acta1823, 698–706 (2012). Reviews the current insights into the dependence of viral replication and/or maturation strategies and viral resistance, highlighting an unsuspected weakness in dependence of viral propagation on the proteostasis programme. ArticleCASPubMed Google Scholar
Tokuriki, N., Oldfield, C. J., Uversky, V. N., Berezovsky, I. N. & Tawfik, D. S. Do viral proteins possess unique biophysical features? Trends Biochem. Sci.34, 53–59 (2009). ArticleCASPubMed Google Scholar
Tokuriki, N. & Tawfik, D. S. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature459, 668–673 (2009). Emphasizes the role of the chaperonin family of folding cages on the evolvability of enzyme function by adjusting the quinary physiological state to protect variant folds from the cytosol while achieving a functional state. ArticleCASPubMed Google Scholar
Specchia, V. et al. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature463, 662–665 (2010). Describes the importance of the proteostasis network component HSP90 in managing transposon-based insertional mutagenesis and its impact on the evolution of phenotype variation, highlighting a new crucial role for HSP90 in chromatin remodelling. ArticleCASPubMed Google Scholar
Abdelhakim, A. H., Oakes, E. C., Sauer, R. T. & Baker, T. A. Unique contacts direct high-priority recognition of the tetrameric transposase–DNA complex by the AAA+ unfoldase ClpX. Mol. Cell30, 39–50 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tariq, M., Nussbaumer, U., Chen, Y., Beisel, C. & Paro, R. Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc. Natl Acad. Sci. USA106, 1157–1162 (2009). Describes the fundamental role of HSP90 in directing the organization of active chromatin to modulate gene expression. ArticlePubMedPubMed Central Google Scholar
Hageman, J. et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol. Cell37, 355–369 (2010). ArticleCASPubMed Google Scholar
Marinova, Z. et al. Valproic acid induces functional heat-shock protein 70 via class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J. Neurochem.111, 976–987 (2009). ArticleCASPubMedPubMed Central Google Scholar
Boyault, C., Sadoul, K., Pabion, M. & Khochbin, S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene26, 5468–5476 (2007). ArticleCASPubMed Google Scholar
Westerheide, S. D. et al. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science323, 1063–1066 (2009). Reports the role of the HAT–HDAC pathway in managing the timing and attenuation of the activity of the proteostasis network through HSR signalling pathways. ArticleCASPubMedPubMed Central Google Scholar
Morimoto, R. I. & Cuervo, A. M. Protein homeostasis and aging: taking care of proteins from the cradle to the grave. J. Gerontol. A Biol. Sci. Med. Sci.64, 167–170 (2009). ArticleCASPubMed Google Scholar
Boyault, C. et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev.21, 2172–2181 (2007). ArticleCASPubMedPubMed Central Google Scholar
Araki, K. & Inaba, K. Structure, mechanism, and evolution of Ero1 family enzymes. Antioxid. Redox Signal16, 790–799 (2012). ArticleCASPubMed Google Scholar
Braakman, I. & Bulleid, N. J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem.80, 71–99 (2011). Summarizes the specific components and mechanisms of the ER, which provides a specialized proteostasis compartmentin Eukarya. ArticleCASPubMed Google Scholar
Giudice, A., Arra, C. & Turco, M. C. Review of molecular mechanisms involved in the activation of the Nrf2–ARE signaling pathway by chemopreventive agents. Methods Mol. Biol.647, 37–74 (2010). ArticleCASPubMed Google Scholar
Rabinowitz, J. D. & White, E. Autophagy and metabolism. Science330, 1344–1348 (2010). Describes the close links between UPS induction, autophagy pathways and the metabolic state of the cell. ArticleCASPubMedPubMed Central Google Scholar
Carrano, A. C., Liu, Z., Dillin, A. & Hunter, T. A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature460, 396–399 (2009). Describes the role of the proteostasis system in managing lifespan through the UPS and its links to survival and fitness through the control of the cellular metabolite pool. ArticleCASPubMedPubMed Central Google Scholar
Fadini, G. P., Ceolotto, G., Pagnin, E., de Kreutzenberg, S. & Avogaro, A. At the crossroads of longevity and metabolism: the metabolic syndrome and lifespan determinant pathways. Aging Cell10, 10–17 (2011). ArticleCASPubMed Google Scholar
Piper, R. C. & Lehner, P. J. Endosomal transport via ubiquitination. Trends Cell Biol.21, 647–655 (2011). Emphasizes the crucial role of mitochrondria in linking proteostasis to longevity pathways to promote increased lifespan. ArticleCASPubMedPubMed Central Google Scholar
Weissman, A. M., Shabek, N. & Ciechanover, A. The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nature Rev. Mol. Cell Biol.12, 605–620 (2011). ArticleCAS Google Scholar
Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell144, 79–91 (2011). Emphasizes the role of the UPS in regulating ubiquitin pathways to affect many aspects of cell, tissue and organismal function. ArticleCASPubMedPubMed Central Google Scholar
Balch, W. E., Roth, D. M. & Hutt, D. M. Emergent properties of proteostasis in managing cystic fibrosis. Cold Spring Harb. Perspect. Biol.3, a004499 (2011). ArticleCASPubMedPubMed Central Google Scholar
Westermark, P., Andersson, A. & Westermark, G. T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev.91, 795–826 (2011). ArticleCASPubMed Google Scholar
Back, S. H. & Kaufman, R. J. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem.81, 767–793 (2012). Outlines new views on the impact of proteostasis in managing pancreatic islet β-cell health in response to insulin stress in type 2 diabetes through Ca2+-mediated signalling pathways between the ER and mitochrondria. ArticleCASPubMedPubMed Central Google Scholar
Whitesell, L. & Lindquist, S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin. Ther. Targets13, 469–478 (2009). ArticleCASPubMed Google Scholar
Vinciguerra, M., Musaro, A. & Rosenthal, N. Regulation of muscle atrophy in aging and disease. Adv. Exp. Med. Biol.694, 211–233 (2010). ArticleCASPubMed Google Scholar
Wu, J. & Kaufman, R. J. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ.13, 374–384 (2006). ArticleCASPubMed Google Scholar
Wang, M. & Caetano-Anolles, G. The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world. Structure17, 66–78 (2009). ArticleCASPubMed Google Scholar
Dekker, C., Willison, K. R. & Taylor, W. R. On the evolutionary origin of the chaperonins. Proteins79, 1172–1192 (2011). A bioinformatic study of the evolution of the complex subunit structure of the chaperonin folding chamber that provides a specialized environment for protein folding. ArticleCASPubMed Google Scholar
Sharma, S. K., De los Rios, P., Christen, P., Lustig, A. & Goloubinoff, P. The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nature Chem. Biol.6, 914–920 (2010). Emphasizes the high energy cost of protein fold generation and protection by the ubiquitous HSP70 chaperone system. Illustrates the dynamic features of the quinary physiological state in protein fold function that enables the evolvability of extant species. ArticleCAS Google Scholar
Doyle, S. M. & Wickner, S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci.34, 40–48 (2009). ArticleCASPubMed Google Scholar